

Study on Speaker Recognition

Lantian Li

CSLT / RIIT

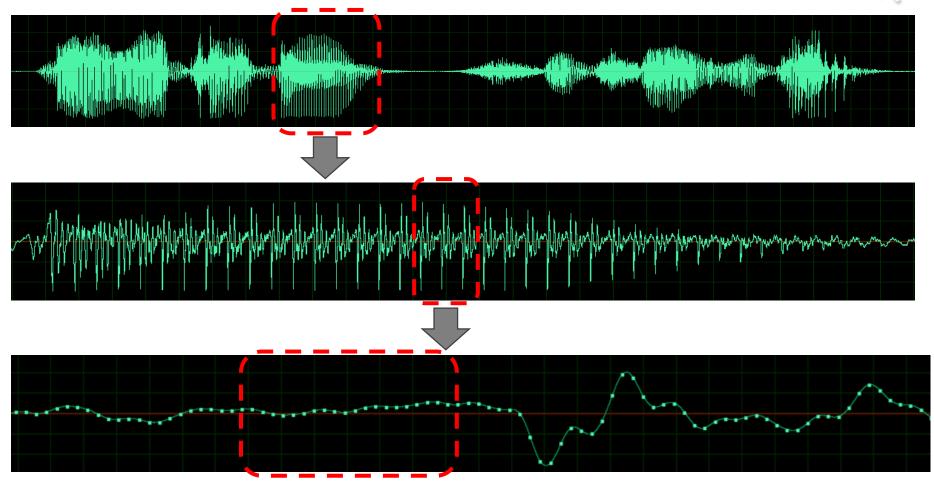
Tsinghua University

lilt13@mails.tsinghua.edu.cn

Outline

- Basic Concepts
- History of Speaker Recognition
 - Where does it come from
 - Three development stages
 - Comparison and combination
- Conclusions and Future work

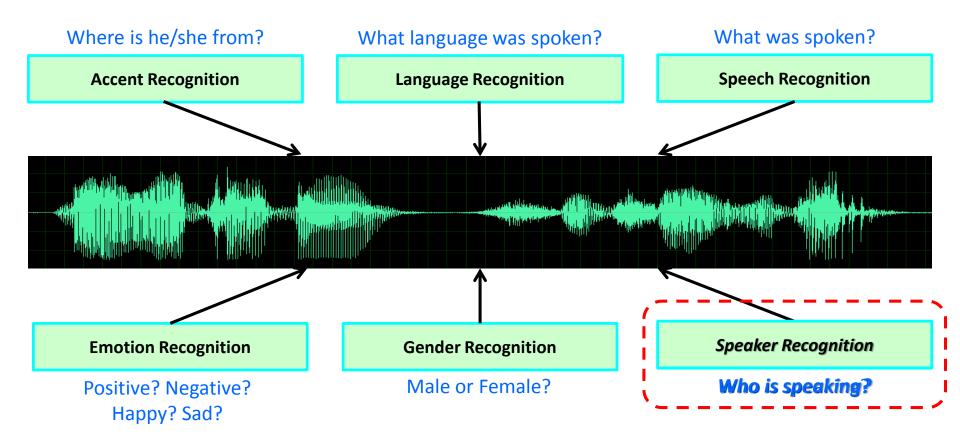
Speech signal



Short-time Fourier Transform (STFT)

Time domain → Frequency domain

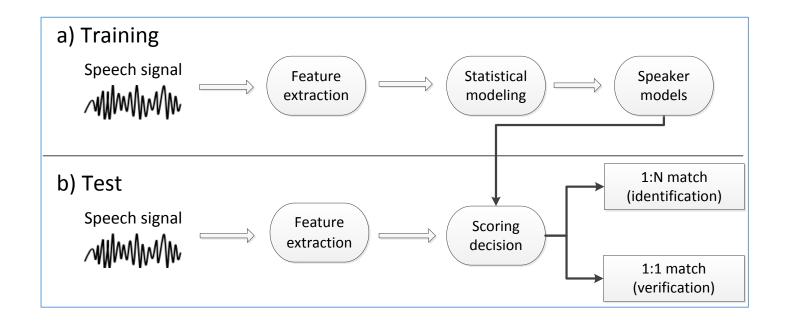
Rich information in speech signals



Mysterious and Fascinating: *simple* in form (one-dimensional vibration), *rich* in information.

Speaker recognition

 Speaker recognition is the identification of a person from characteristics of voices (voice biometrics). It is also called voiceprint recognition. [wiki]



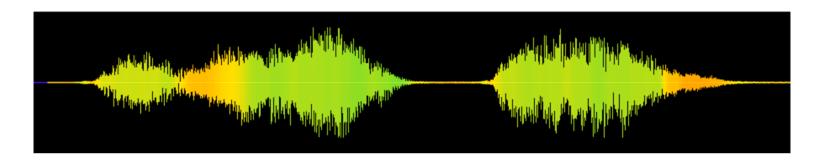
Advantages and applications

- Advantages of speaker recognition
 - Speech signal more acceptable by users
 - Data acquisition much easier (e.g. a mobile phone)
 - Remote authentication more convenient
- Application scenarios
 - Access control (e.g. voice lock)
 - Transaction authentication (e.g. remote payment)
 - Forensic analysis (e.g. police criminal detection)

- Speaker Identification
 - Determining which identity in a specified speaker set is speaking. 1-vs-N

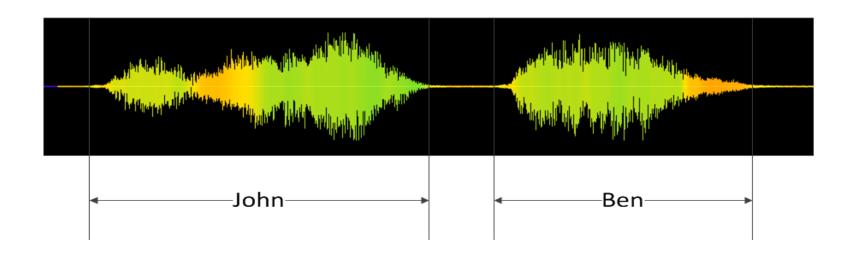
- Speaker Verification
 - Determining whether a claimed identity is speaking. 1-vs-1

- Speaker Detection
 - Determining whether a specified target speaker is speaking.



This sentence is a conversation from John and Ben

- Speaker Tracking (Speaker Diarization)
 - Performing speaker detection as a function of time, giving the timing index of the specified speaker.

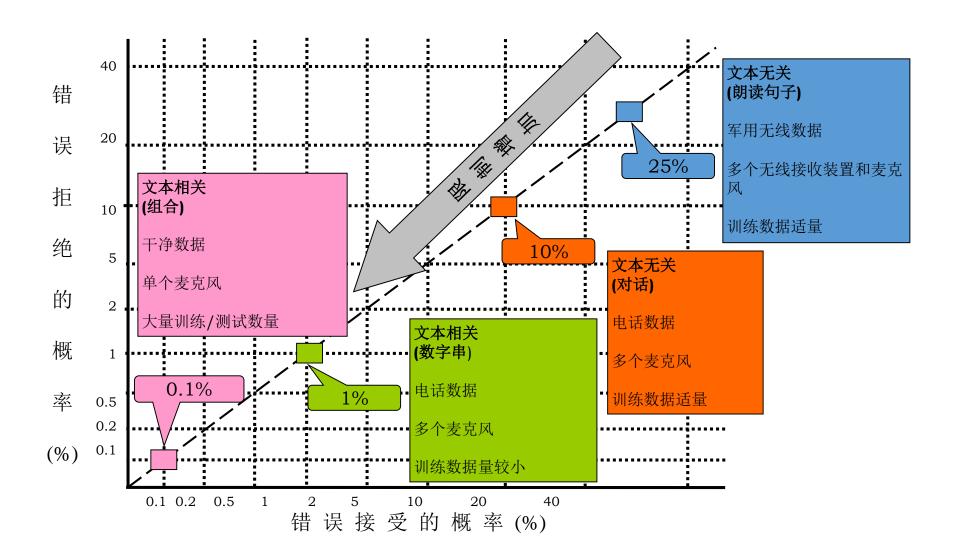


- Speaker Identification
 - Determining which identity in a specified speaker set is speaking. 1-vs-N
- Speaker Verification
 - Determining whether a claimed identity is speaking. 1-vs-1
- Speaker Detection
 - Determining whether a specified target speaker is speaking.
- Speaker Tracking (Speaker Diarization)
 - Performing speaker detection as a function of time, giving the timing index of the specified speaker.

Categories in text content

- Text-dependent
 - A pre-determined text for both training and test.
- Text-independent
 - No constraints on the text for training and test.
- Text-prompted
 - The text to speak is not fixed each time when use, but prompted by the system from a specific set of text.
 - Combined with ASR, it is regarded as a 'who spoke what' task.

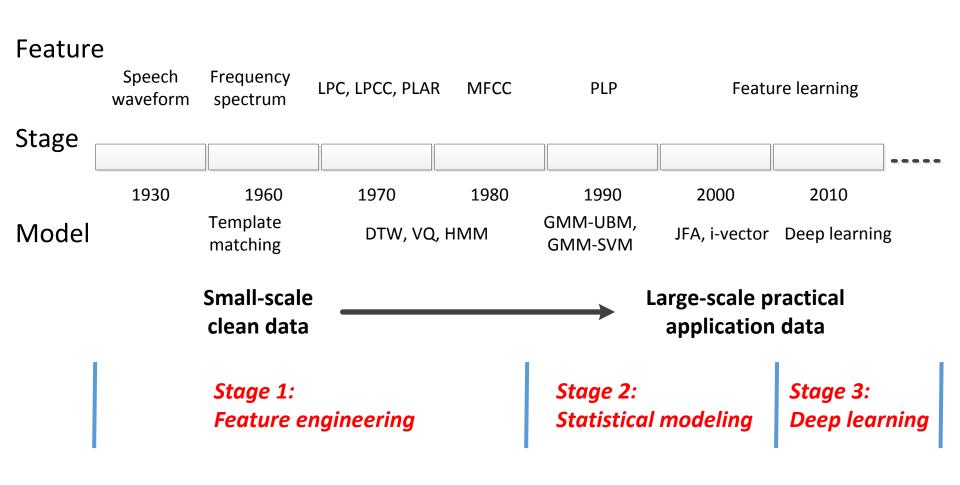
Categories in text content



History of speaker recognition

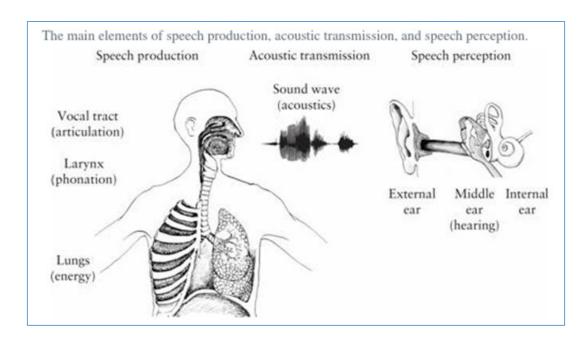
- A bird may be known by its song. (闻其声而知其人)
 - Auditory sense (听觉)
- Back to 1660s, people used the speech signal for identity authentication in the criminal detection (刑侦线索)
 - The trials on the death of Charles I. in Britain
- In 1930s, research on speaker recognition was started.
 - Human auditory perception (人耳听觉感知)
- Biological information research (生物信息研究) and computer information technology (计算机信息技术)

History of speaker recognition



Stage 1: Feature engineering

- Goal: to discover features that are sensitive to speaker traits while invariant to other factors.
- Focus: speech production and auditory perception



Stage 1: Feature engineering

Fil

- + Robust against channel effects and noise
- Difficult to extract
- A lot of training data needed
- Delayed decision making
- + Easy to extract
- + Small amount of data necessary
- + Text- and language independence
- + Real-time recognition
- Affected by noise and mismatch

High-level features

Phones, idiolect (personal lexicon), semantics, accent, pronunciation

Prosodic & spectrotemporal features

Pitch, energy, duration, rhythm, temporal features

Short-term spectral and voice source features

Spectrum, glottal pulse features

Learned (behavioral)

Socio-economic status, education, place of birth, 后天学习的 language background, personality type, parental influence

ÿУ

Physiological (organic)

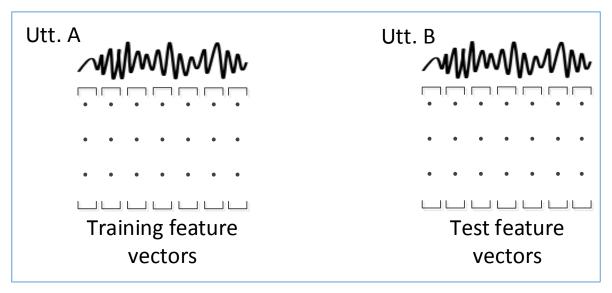
Size of the vocal folds, length and dimensions of the vocal tract 生来就有的

Stage 1: Feature engineering

- Unfortunately, none of these features can be regarded as having caught the *fundamental* patterns of speakers.
- **MFCC** is still the most useful feature.
- Speaker modeling and evaluation metrics are too simple,
 and mostly applied in the text-dependent condition.
- Template (Nonparametric) models
 - VQ (Vector quantization)
 - DTW (Dynamic Time Warping)

- Classical speaker models
 - Template (Nonparametric) models
 - Vector quantization (VQ) model
 - Dynamic Time Warping (DTW)
 - Probabilistic (Parametric) models
 - Gaussian mixture model (GMM)
 - GMM-UBM / GMM-SVM
 - i-vector / JFA

- Template (Nonparametric) models
 - Training and test feature vectors are directly compared with each other.
 - The distortion between them represents their degree of similarity.

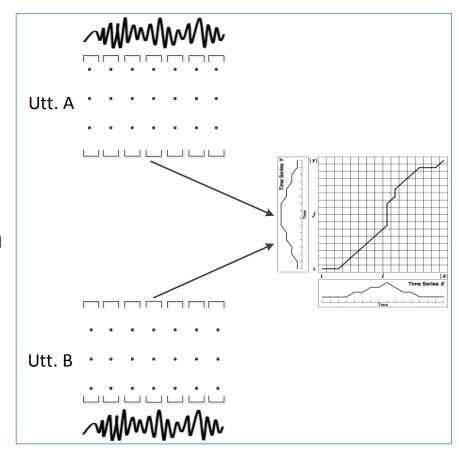


- Template models Vector quantization (VQ)
 - Data compression / Computational speed-up
 - The simplest text-independent model
 - Clustering method such as K-means to construct a codebook. (Centroid model)
 - Average quantization distortion:

$$D_{\mathcal{Q}}(\mathscr{X},\mathscr{R}) = \frac{1}{T} \sum_{t=1}^{T} \min_{1 \leqslant k \leqslant K} d(\mathbf{x}_{t}, \mathbf{r}_{k})$$

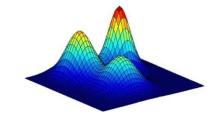
 $\mathscr{X} = \{x_1, \dots, x_T\}$: test feature vectors, $\mathscr{R} = \{r_1, \dots, r_K\}$: enrollment feature vectors, $d(\cdot, \cdot)$: distance measure.

- Template models Dynamic Time Warping (DTW)
 - Text-dependent model
 - Two variable-length temporal sequences
 - Dynamic programming
 - To search an optimal path with the lowest cost



- Probabilistic models Gaussian mixture model (GMM)
 - A GMM:

$$p(\boldsymbol{x}|\lambda) = \sum_{k=1}^{K} P_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$



• The k-th Gaussian component:

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) = (2\pi)^{-\frac{d}{2}}|\boldsymbol{\Sigma}_{k}|^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{k})^{T}\boldsymbol{\Sigma}_{k}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_{k})\right\}$$

Maximum likelihood (ML) estimation

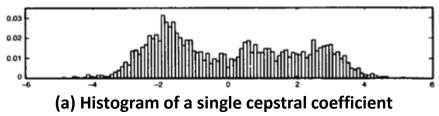
$$LL_{avg}(\mathcal{X}, \lambda) = \frac{1}{T} \sum_{t=1}^{T} \log \sum_{k=1}^{K} P_k \mathcal{N}(\mathbf{x}_t | \mathbf{\mu}_k, \mathbf{\Sigma}_k) \xrightarrow{\mathbf{EM}} \text{Means: } \bar{\mu}_k = \frac{\sum_{t=1}^{T} p(k | \mathbf{x}_t, \lambda) \mathbf{x}_t}{\sum_{t=1}^{T} p(k | \mathbf{x}_t, \lambda)}$$

Mixture Weights:
$$\bar{P}_k = \frac{1}{T} \sum_{t=1}^{T} p(k|x_t, \lambda)$$

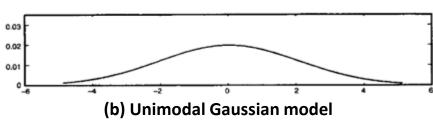
Means:
$$\bar{\mu}_k = \frac{\sum_{t=1}^T p(k|x_t, \lambda) x_t}{\sum_{t=1}^T p(k|x_t, \lambda)}$$

Variances:
$$\bar{\sigma}_k^2 = \frac{\sum_{t=1}^T p(k|x_t, \lambda) x_t^2}{\sum_{t=1}^T p(k|x_t, \lambda)} - \bar{\mu}_k^2$$

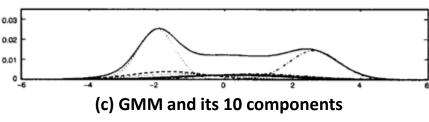
Probabilistic models - Gaussian mixture model (GMM)



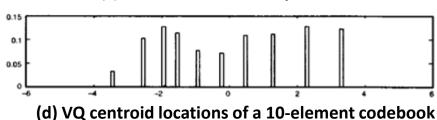
A linear combination of Gaussian functions.



Smooth approximations to arbitrarily-shaped sample distributions.

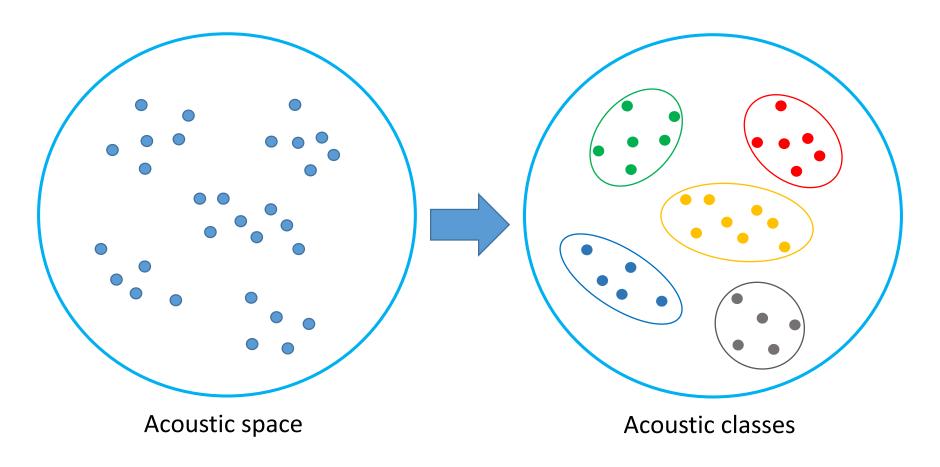


A *hybrid* model between the unimodal Gaussian model and the VQ model.

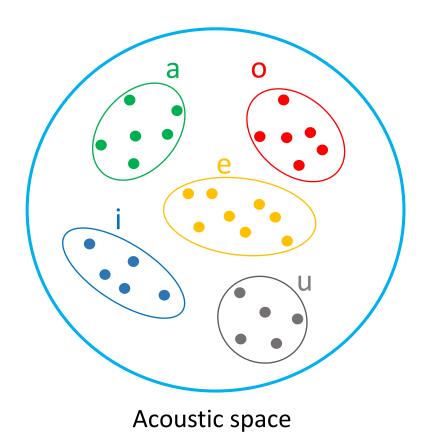


Its components detail the multi-modal nature of the samples.

• Probabilistic models - Gaussian mixture model (GMM)



Probabilistic models - Gaussian mixture model (GMM)



Underlying information

Each class represents a phonetic event

Mixture weight: the area size

Mean vector: the position

Covariance matrix: the elliptic shape

- Probabilistic models GMM-UBM
 - Universal background model (UBM)
 - represents a speaker-independent model
 - reflects the common acoustic classes among humans
 - Maximum a posteriori (MAP): a linear transformation
 - UBM --> speaker-specific GMM

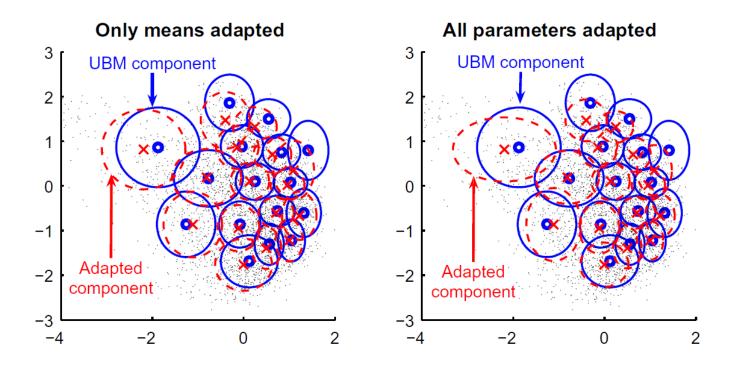
$$\Pr(i \mid x_{t}) = \frac{w_{i} p_{i}(x_{t})}{\sum_{j=1}^{M} w_{j} p_{j}(x_{t})}$$

$$E_{i}(x) = \frac{1}{n_{i}} \sum_{t=1}^{T} \Pr(i \mid x_{t})$$

$$\hat{\mu}_{i} = \alpha_{i}^{m} E_{i}(x) + (1 - \alpha_{i}^{m}) \mu_{i}$$

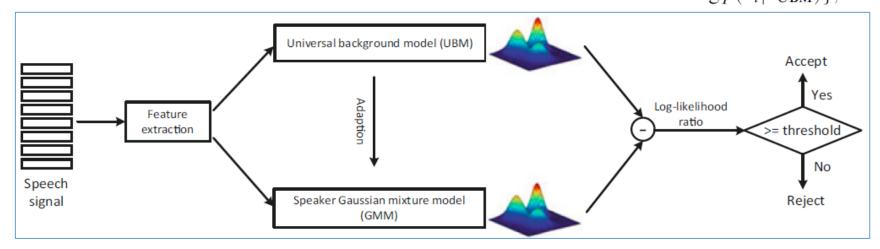
$$\hat{\sigma}_{i}^{2} = \alpha_{i}^{v} E_{i}(x^{2}) + (1 - \alpha_{i}^{v}) (\sigma_{i}^{2} + \mu_{i}^{2}) - \hat{\mu}_{i}^{2}$$

Probabilistic models – GMM-UBM



Examples of GMM adaptation using *maximum a posteriori* (MAP) principle. The solid ellipses and dashed ellipses are represented the UBM and speaker GMM.

- Probabilistic models GMM-UBM
 - Recognition mode
 - The log likelihood ratio: $LLR_{avg}(\mathcal{X}, \lambda_{target}, \lambda_{UBM}) = \frac{1}{T} \sum_{t=1}^{T} \left\{ \log p(\mathbf{x}_t | \lambda_{target}) \log p(\mathbf{x}_t | \lambda_{UBM}) \right\},$



The framework of a GMM-UBM system

Probabilistic models – Factor analysis

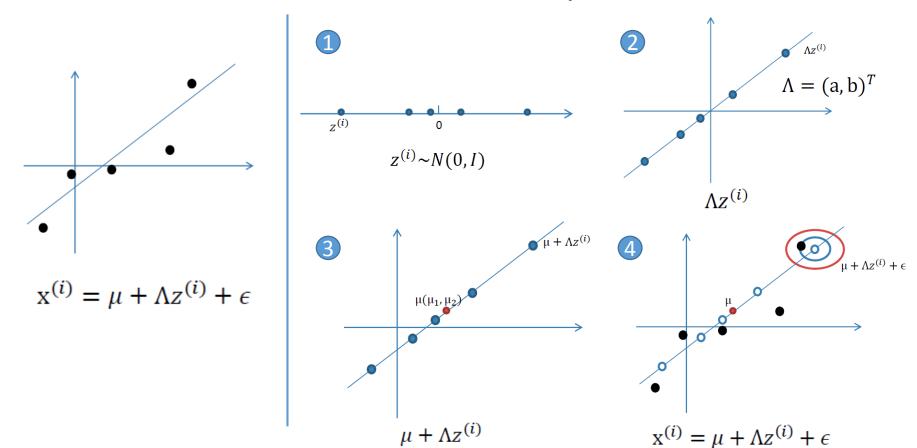
• JFA:
$$M=m+Vy+Ux+Dz$$
 Speaker space Session space Residual space

• i-vector: M = m + Tw

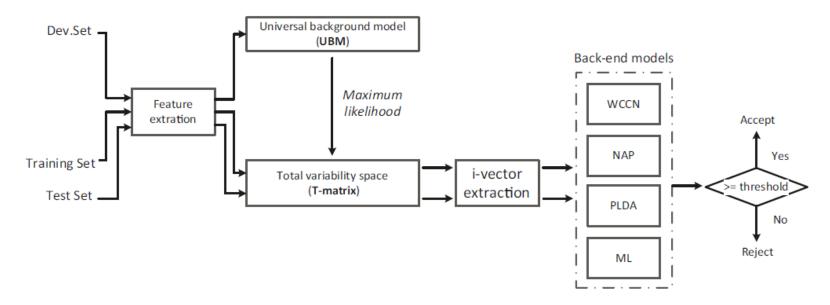
Total-variance space

- Loading matrix T: EM procedure.
- Total factor w: posterior probability $p(\mathbf{w}|\mathbf{X})$

Probabilistic models – Factor analysis



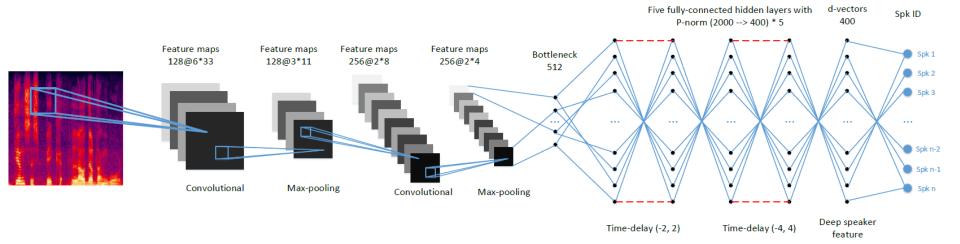
- Probabilistic models Factor analysis
 - i-vector model



The framework of an i-vector system

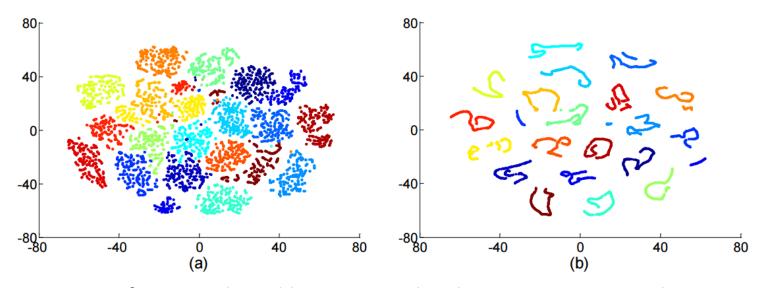
- Deep learning is a branch of machine learning methods based on learning representations of data.
- The big data and the BP algorithms
- Two directions on deep speaker recognition
 - Deep feature learning
 - End-to-end learning

- Deep feature learning
 - Convolutional components: extract local discriminative patterns from the temporal-frequency space.
 - Time-delay components: increase the effective temporal context for each frame.



The CT-DNN structure used for deep speaker feature learning

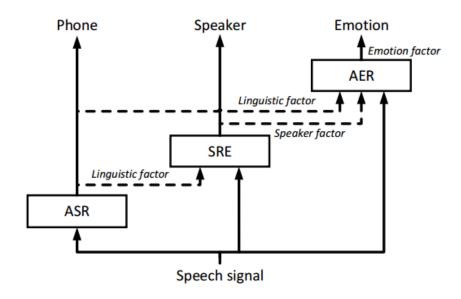
Deep feature learning



Deep features plotted by t-SNE. Each color represents a speaker.

Short-time spectral patterns rather than long-term probabilistic patterns

Deep speech factorization



The cascaded deep factorization approach

Different from JFA, it is deep, non-linear and non-Gaussian.

• Spectrum reconstruction

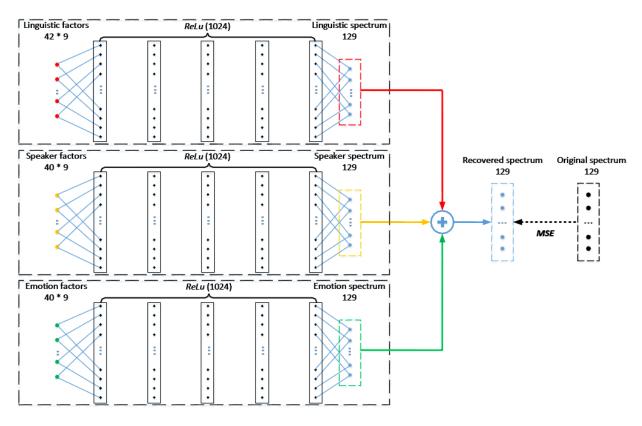
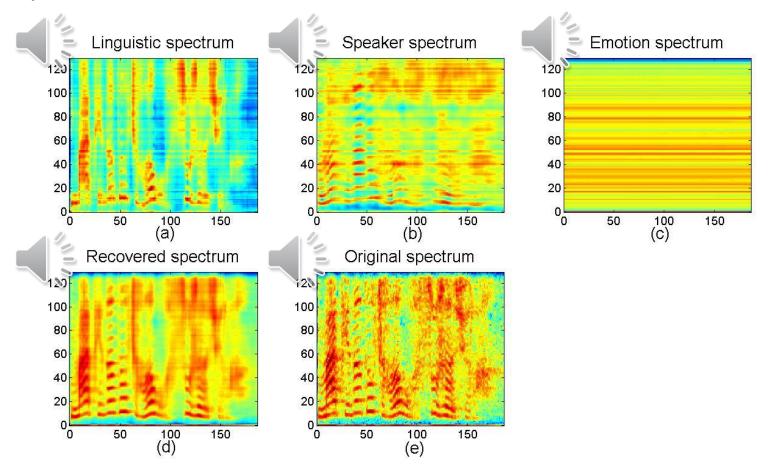
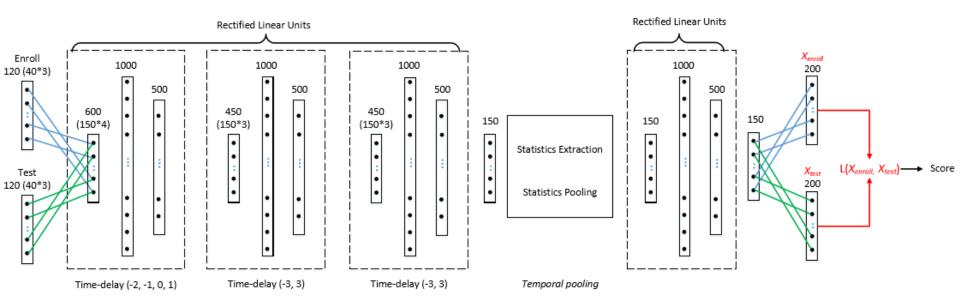


Figure 3: The architecture for spectrum reconstruction.

• Spectrum reconstruction



- End-to-end learning
 - A whole black box



The DNN structure of the end-to-end learning system

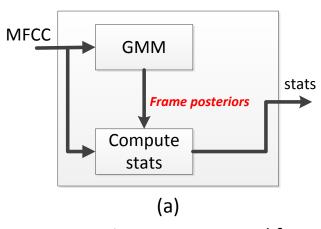
- Deep feature learning and end-to-end learning
 - Different in model structure
 - Front-end and back-end
 - Fnd-to-end
 - Different in training objectives
 - Speaker identification
 - Speaker verification
 - Different in training scheme
 - one-hot style
 - pair-wised style

Comparison the EER results of three system performances.

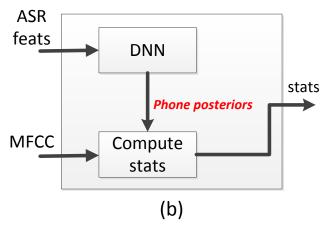
EER(%) results of the three SV systems.

		EER%		
Systems	Scoring	C(4-4)	C(40-4)	
i-vector	Cosine	16.96	4.81	
	LDA	10.95	3.30	
	PLDA	8.84	3.39	
Deep feature	Cosine	10.31	4.01	
	LDA	7.86	2.39	
	PLDA	13.01	5.24	
End-to-end	-	9.85	4.59	

GMM i-vector and DNN i-vector



- Frame posteriors are computed from GMM.
- Each Gaussian component represents a region / class for stats computation.
- Unsupervised clustering.



- Phone posteriors are derived from **DNN**.
- Each sub-phonetic categories (senones) of DNN represents a region / class.
- Supervised discriminative training.

Diagram of the (a) GMM- and (b) DNN-based statistics computation

Joint Training for speech and speaker recognition

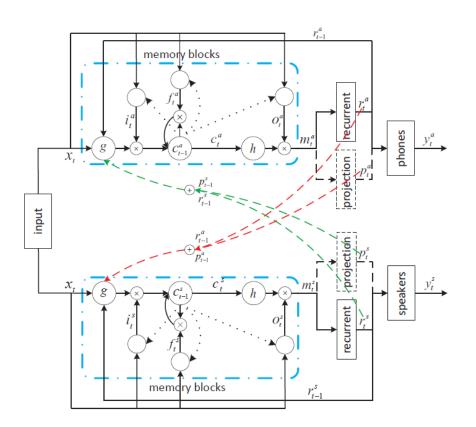
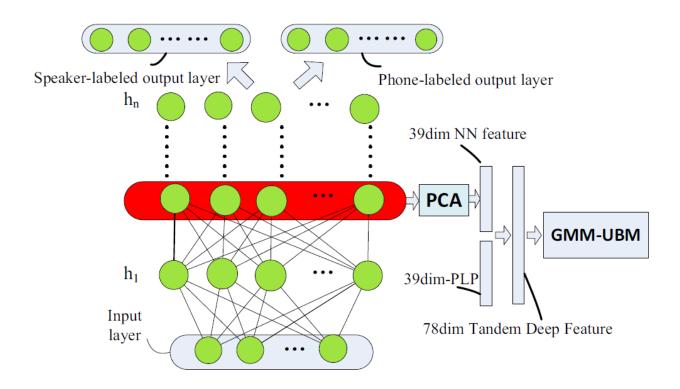


Table 3: Joint training results.

Feed	dback		Feed	back		ASR	SRE
Info.		Input				WER%	EER%
r	p	i	f	0	g		
						7.41	1.84
						7.05	0.62
	\checkmark					6.97	0.64
						7.12	0.66
	\checkmark					7.24	0.65
						7.26	0.65
	\checkmark					7.28	0.59
						7.11	0.62
	\checkmark				\checkmark	7.11	0.67
						7.06	0.66
	\checkmark					7.23	0.71
						7.05	0.55
	\checkmark		$\sqrt{}$		$\sqrt{}$	7.23	0.62

Deep speaker feature and statistical model



Conclusions and Future work

- Long history
- Combination of the past and the present
- Questions:
 - The fundamental feature of speaker traits
 - A powerful speaker model

Thank you

http://lilt.cslt.org/