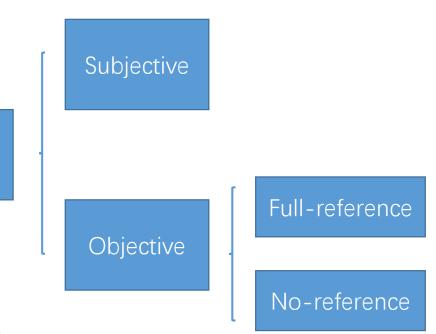
Why we say PESQ is a bad metric?

Chen Chen

2022/09/30

SQA: Speech quality assessment

- SQA metrics
 - Subjective metrics
 - Mean Opinion Score (MOS)
 - Objective metrics
 - Full-reference / similarity-based metrics
 - Perceptual evaluation of speech quality (PESQ)
 - Mel-cepstral distance (MCD)
 - Perceptual objective listening quality assessment (POLQA)
 - Virtual Speech Quality Objective Listener (ViSQOL)
 - No-reference / non-intrusive metrics
 - MOSNET
 - Deep Noise Suppression Mean Opinion Score (DNSMOS)
 - Non-Intrusive Speech Quality Assessment (NISQA)



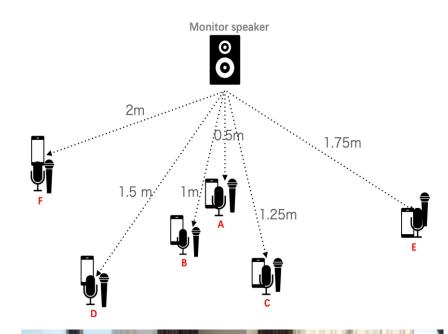
SQA

Datasets

• DDS

- A new device-degraded speech dataset for speech enhancement
- built on top of two existing datasets: DAPS and VCTK

Setting	Count	Description
Speech materials	2	DAPS, VCTK clean sets
Environments	9	conference rooms (2), offices (2), studios (3), living room (1), waiting room (1)
Devices	3	iPad Air (MEMS), Uber Mic (condenser), MPM-1000 (condenser)
Device positions	6	A(50 cm, 0°), B(100 cm, 15°) C(125 cm, 30°), D(150 cm, 45°) E(175 cm, 60°), F(200 cm, 75°)



Datasets

• DDS

	DAPS [31]											
Type	PESQ	VISQOL	DPAM	CDPAM	L1	L2	M.STFT	NISQA	SQAPP	DNSMOS	NORESQA	MOS
	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	\uparrow	\uparrow	\downarrow	1
Clean	-	-	-	-	-	-	-	4.68	3.45	3.85	9.56	4.48
Confroom1	1.55	2.37	2.80	0.30	2.65	30.70	0.19	2.89	3.08	3.46	12.02	2.90
Confroom2	1.33	2.20	2.79	0.34	2.76	31.37	0.20	2.38	2.773	3.17	13.02	2.39
Office1	1.80	2.42	2.73	0.29	2.44	27.86	0.19	3.01	3.10	3.52	11.01	2.99
Office2	1.57	2.38	2.77	0.32	2.52	28.96	0.19	2.71	3.04	3.42	11.52	2.63
Studio1	1.59	2.35	2.78	0.32	2.62	29.40	0.19	2.70	2.94	2.95	12.07	2.63
Studio2	2.03	2.60	2.76	0.27	2.40	27.25	0.18	3.48	3.20	3.65	10.91	3.20
Studio3	2.03	2.54	2.83	0.29	2.53	30.50	0.17	3.58	3.18	3.61	10.86	3.28
Waitingroom1	2.11	2.55	2.75	0.27	2.39	27.80	0.17	3.46	3.23	3.55	10.81	3.42
Livingroom1	1.56	2.36	2.87	0.30	2.67	32.44	0.19	2.82	3.14	3.55	11.28	2.98

	VCTK [32]											
Type	PESQ	VISQOL	DPAM	CDPAM	L1	L2	M.STFT	NISQA	SQAPP	DNSMOS	NORESQA	MOS
	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	†	\uparrow	\uparrow	\downarrow	1
Clean		-	-	-	-	-	-	4.14	3.37	3.62	9.97	4.18
Confroom1	1.70	2.15	2.80	0.32	2.04	22.84	0.17	2.81	3.03	3.50	13.24	2.77
Confroom2	1.48	2.04	2.75	0.38	2.12	23.31	0.19	2.37	2.75	2.93	14.35	2.29
Office1	1.94	2.14	2.69	0.34	1.88	20.90	0.17	2.81	3.00	3.37	11.82	2.79
Office2	1.70	2.12	2.75	0.37	1.95	21.74	0.18	2.64	2.97	3.32	12.49	2.60
Studio1	1.72	2.04	2.74	0.37	2.06	22.24	0.18	2.65	2.84	3.16	13.51	2.53
Studio2	2.06	2.27	2.67	0.34	1.83	20.05	0.17	3.19	3.07	3.50	11.39	2.96
Studio3	2.03	2.23	2.78	0.33	1.96	22.86	0.16	3.29	3.03	3.41	11.16	3.03
Waitingroom	2.17	2.23	2.69	0.31	1.83	20.05	0.16	3.21	3.07	3.52	11.21	3.15
Livingroom1	1.71	2.14	2.88	0.35	2.05	24.05	0.17	2.75	3.01	3.48	12.16	2.78

Catalog

- 1. Audio Similarity is Unreliable as a Proxy for Audio Quality (Interspeech 2022)
- * Adobe Research | Princeton University
- 2. MOSNet: Deep Learning-based Objective Assessment for Voice Conversion (2019)
- * Academia Sinica, Taipei, Taiwan | National Institute of Informatics, Japan
- 3. InQSS: a speech intelligibility and quality assessment model using a multi-task learning network (Interspeech 2022)
- * Academia Sinica, Taiwan

* Adobe Research | Princeton University

Motivation

- PESQ has acknowledged shortcomings, and may not be reliable to detect subtle differences.
- Quality measures, such as MOS, may not involve a reference that is in parallel with the test signal.

Inspire

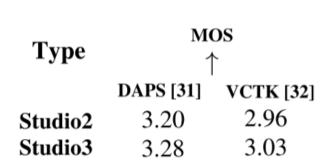
- different references, although sharing the same quality, may result in different similarities when compared with the same test signal
- different test signals, although having the same quality rating, may have significantly different similarities to a reference signal

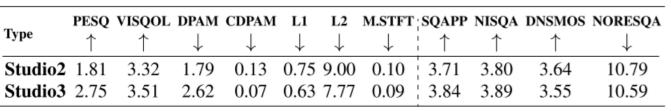
Experiments

- Two reference with one test recording
- One reference with two test recordings
- Matching datasets acoustically

Experiments

- Two reference with one test recording
 - The reference recordings are judged to be equal quality
 - Majority of similarity metrics show large (up to 85%) differences, and fail to provide equal similarity ratings.
 - No-reference metric ratings are very close (up to 3.5% difference), and reflect the MOS ratings well.





Ref.

(confroom1

Different recording setups

Quality

Ref. 2

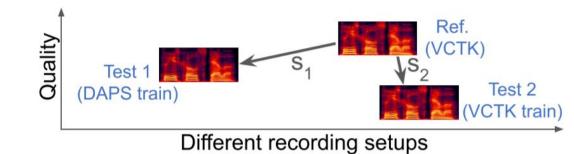
(studio2)

Table 2: Scenario 1: Performance of similarity and no-reference metrics when reference recordings from studio2 and studio3, and test recordings from confroom1 are selected. We see that similarity metrics show different similarities, even though no-reference metrics (and subjective ratings - Table 1) suggest the two references are of equal quality.

^{*} Adobe Research | Princeton University

Experiments

- One reference with two test
 - similarity measures do not reflect subjective ratings.
 - no-reference metrics reflects subjective quality well.



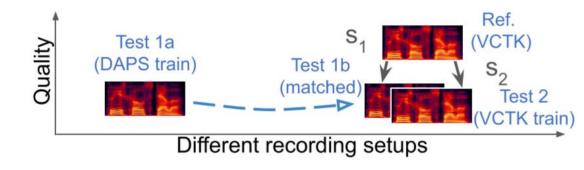
DAPS Model VCTK Model Valset Noisy Valset Clean **PESQ** ↑ 3.13 2.16 1.96 **VISQOL** ↑ 4.18 3.81 3.60 **DPAM** \downarrow 2.77 1.35 1.71 CDPAM \downarrow 0.07 0.30 0.21 $L1\downarrow$ 2.24 0.30 0.92**L2** ↓ 20.42 2.14 5.90 Multi-res STFT \downarrow 0.14 0.07 0.17**SQUAPP** ↑ 4.06 3.76 2.73 3.85 **NISQA** ↑ 4.65 3.06 4.60 4.90 **DNSMOS** ↑ 3.55 3.02 3.55 3.64 **NORESQA** ↓ 9.57 10.53 12.88 9.44 MOS↑ 4.10 4.02 2.48 4.29

Table 3: **Scenario 2**: Performance of similarity metrics, noreference metrics and MOS ratings (± 0.02) across speech enhancement (SE) models trained on two datasets (DAPS and VCTK), and evaluated on the VCTK evaluation set.

^{*} Adobe Research | Princeton University

Experiments

Matching datasets acoustically



T	PESQ	VISQOL	DPAM	CDPAM	L1	L2	M.STFT	SQAPP	NISQA	DNSMOS	NORESQA	MOS
Туре	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	1	\uparrow	\uparrow	\downarrow	1
VCTK Model	3.13	4.18	1.35	0.07	0.30	2.14	0.07	3.76	4.65	3.55	10.53	4.02
DAPS Model	2.16	3.60	2.77	0.21	2.24	20.42	0.14	4.06	4.90	3.64	9.57	4.10
EQ Match.	2.32	3.68	2.73	0.22	2.00	25.99	0.13	3.96	4.89	3.61	10.32	4.11
Breath rem.	2.67	4.18	2.67	0.13	1.95	25.97	0.12	3.84	4.84	3.63	10.29	4.19
Energy norm.												
itr0	2.32	4.17	2.68	0.14	1.92	24.85	0.13	3.87	4.77	3.56	10.09	4.14
itr200	2.29	4.17	2.69	0.14	1.92	24.83	0.14	3.94	4.78	3.55	10.07	4.10
itr1000	2.29	4.17	2.69	0.15	1.91	24.77	0.14	3.95	4.78	3.55	10.07	4.10
Orig. Phase	3.16	4.44	1.21	0.05	0.21	0.25	0.13	3.97	4.78	3.60	10.35	4.19

Table 4: **Scenario 3**: Objective measures and MOS ratings (± 0.03) across pre-processing stages (Section 2.3) when recordings from DAPS trained SE model are matched to the VCTK trained SE model.

^{*} Adobe Research | Princeton University

Conclusion

• similarity metrics (like PESQ) are an unreliable proxy for audio quality, and should be used cautiously

^{*} Adobe Research | Princeton University

Motivation

- Objective evaluation metrics for voice conversion (VC) are not always correlated with human perception
- Subjective evaluation metrics are time-consuming and expensive.

Dataset

large-scale listening test results of the Voice Conversion Challenge (VCC) 2018

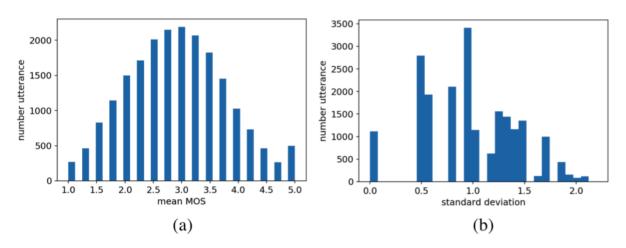


Figure 1: *Histograms of the mean (a) and standard deviation (b) of four MOS ratings for each utterance in the VCC 2018.*

^{*} Academia Sinica, Taipei, Taiwan | National Institute of Informatics, Japan

Method

$$O = \underbrace{\frac{1}{S} \sum_{s=1}^{S} [(\hat{Q}_s - Q_s)^2]}_{S} + \underbrace{\frac{\alpha}{T_s} \sum_{t=1}^{T_s} (\hat{Q}_s - q_{s,t})^2]}_{S}$$

Utterance loss

Frame-wise loss

model	BLSTM	CNN	CNN-BLSTM					
input layer	input ((N X 257 mag spectrogram)						
conv. layer		$\begin{cases} conv3 - (channels)/1 \\ conv3 - (channels)/1 \\ conv3 - (channels)/3 \end{cases} X4$ $channels = [16, 32, 64, 128]$						
recurrent layer	BLSTM-128		BLSTM-128					
	FC-64,	FC-64,	FC-128,					
FC	ReLU,	ReLU,	ReLU,					
layer	dropout	dropout	dropout					
-	FC	C-1 (frame-	wise scores)					
output layer	average pool (<i>utterance score</i>)							

^{*} Academia Sinica, Taipei, Taiwan | National Institute of Informatics, Japan

Experiments

Table 3: *Utterance-level and system-level prediction results for different models, where the subscript denotes the batch size.*

	utte	rance-le	evel	system-level			
Modelbatchsize	LCC	SRCC	MSE	LCC	SRCC	MSE	
$BLSTM_{I}$ [7]	0.511	0.484	0.604	0.826	0.808	0.165	
BLSTM_{16}	0.487	0.453	0.658	0.818	0.797	0.190	
$BLSTM_{64}$	0.251	0.254	0.803	0.412	0.427	0.404	
$\overline{\text{CNN}_I}$	0.638	0.587	0.486	0.945	0.875	0.058	
CNN_{16}	0.620	0.573	0.512	0.944	0.890	0.067	
CNN_{64}	0.624	0.585	0.522	0.946	0.872	0.057	
CNN-BLSTM ₁	0.584	0.551	0.634	0.951	0.873	0.135	
CNN-BLSTM ₁₆	0.607	0.569	0.540	0.944	0.897	0.055	
CNN-BLSTM ₆₄	0.642	0.589	0.538	0.957	0.888	0.084	

LCC: Linear Correlation Coefficient

SRCC: Spearman Rank Correlation Coefficient

^{*} Academia Sinica, Taipei, Taiwan | National Institute of Informatics, Japan

• Experiments

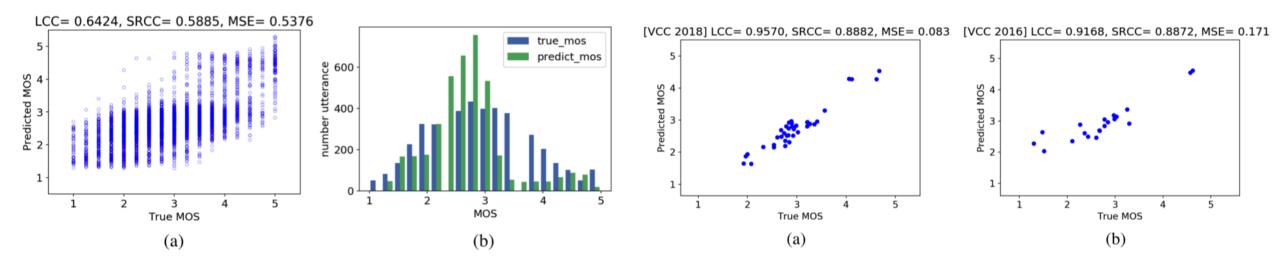


Figure 2: Scatter plot (a) and histogram (b) of the utterance-level predictions of CNN-BLSTM₆₄.

Figure 3: Scatter plot of system-level predictions on the testing set in (a) the VCC 2018 and (b) the VCC 2016.

^{*} Academia Sinica, Taipei, Taiwan | National Institute of Informatics, Japan

* Academia Sinica, Taiwan

Motivation

- Similarity-based metrics
 - reference clean speech signals are often unavailable in real-world applications
 - the results might not correlate well with the listening test results
- Non-Intrusive metrics
 - only a few studies have investigated multi-task models for intelligibility and quality assessment due to the limitations of available data

Main work

- Released TMHINT-QI1, a Chinese speech dataset with subjective quality and intelligibility scores
- Propose the InQSS, a multi-task learning framework using training-from-scratch and pretrained self-supervised learning (SSL) models

- * Academia Sinica, Taiwan
- Dataset: TMHINT-QI
 - for SE
 - 16kHz, 16bit
 - 10 Chinese characters, ~3s
 - Two parts
 - First
 - 6 spk (3F3M) * 200 utts = 1200 clean utts
 - 5 noise types, 8 SNR levels
 - 3 nn-based SE methods (FCN, DDAE, Trans)
 - Second
 - 2 spk (1F1M) * 115 utts = 230 clean utts
 - 4 noise types, 4 SNR levels
 - 5 SE models
 - Total: 24,408 samples with 14,919 unique utterances

Dataset: TMHINT-QI

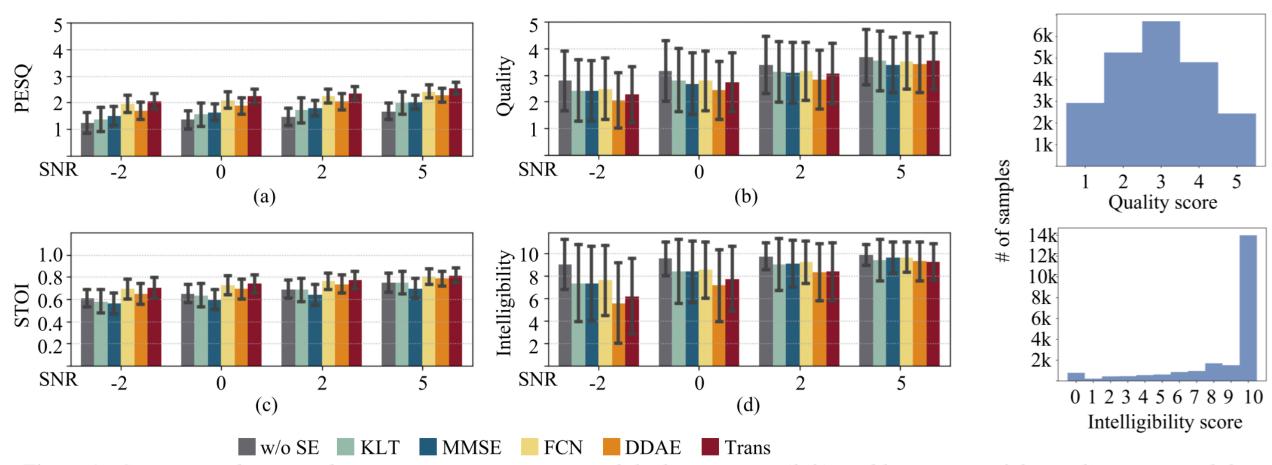
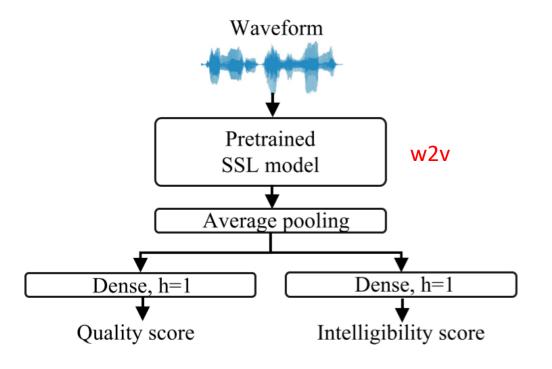


Figure 1: Comparison between objective assessment metrics and the listening test (left), and histograms of the quality scores and the intelligibility scores (right).

^{*} Academia Sinica, Taiwan

* Academia Sinica, Taiwan

小波散射变换 wavelet scattering transform Method Scattering coefficients Spectrogram Conv2D \times 3, k=(3,3), f=16 Conv2D \times 3, k=(3,3), f=16 Conv2D \times 3, k=(3,3), f=32 Conv2D \times 3, k=(3,3), f=32 Conv2D \times 3, k=(3,3), f=64 Conv2D \times 3, k=(3,3), f=64 Conv2D \times 3, k=(3,3), f=128 Conv2D \times 3, k=(3,3), f=128 Concatenate BLSTM, h=256 + Dropout=0.3 BLSTM, h=256 + Dropout=0.3 Dense, h=128 + Dropout=0.3 Dense, h=128 + Dropout=0.3Dense, h=1 + Dropout=0.3Dense, h=1 + Dropout=0.3(frame-wise score) (frame-wise score) Global Average pooling Global Average pooling Intelligibility score Quality score (utterance-wise score) (utterance-wise score) train with L2 loss InQSS-MOSNet



train with L1 loss InQSS-SSL

Experiments on intelligibility

 scattering coefficients are more useful for intelligibility prediction than
 spectrograms

multi-task is better than only one task

combine mos with ssl is best

Model / Method	Input	MSE	PCC	SRCC	
—In-MOSNet-S ₁	spec	2.562	0.695	0.610] 1
In-MOSNet-SII	scat	2.425	0.708	0.633	l
—In-MOSNet-SIII	spec+scat	2.393	0.714	0.642	3
InQSS-MOSNet	spec+scat	2.117	0.755	0.682	4
In-SSL	wav	2.571	0.749	0.645	5
> InQSS-SSL	wav	2.552	0.754	0.664	6
In-MOSSSL	wav	2.015	0.777	0.668	7
_	spec+scat				
InQSS-MOSSSL	wav	2.017	0.791	0.700	8
	spec+scat				
STOI [1]	-	5.573	0.482	0.461	C
Google-ASR	-	7.305	0.710	0.679	10

^{*} Academia Sinica, Taiwan

* Academia Sinica, Taiwan

Experiments on quality

multi-task is better than only one task

 the SSL model in [35] was trained on a much larger speech quality dataset than the TMHINT-QI, and therefore has a better generalizability than our model

 MSE evaluation results are inconsistent with the PCC and SRCC results on out-of-domain datasets

	Model	Dataset	MSE	PCC	SRCC	
/	Q-MOSNet*	TMHINT-QI	0.439	0.753	0.698	1
-]	InQSS-MOSNet*	TMHINT-QI	0.422	0.763	0.715	2
	Q-SSL*	TMHINT-QI	0.388	0.794	0.750	3
	$InQSS-SSL^*$	TMHINT-QI	0.365	0.800	0.754	4
_/ I	nQSS-MOSSSL*	TMHINT-QI	0.353	0.804	0.759	5
	DNSMOS [9]	TMHINT-QI	0.915	0.496	0.311	6
	NISQA [40]	TMHINT-QI	3.140	0.529	0.348	7
	SSL [35]	TMHINT-QI	4.417	0.574	0.405	8
	Q-MOSSSL	DAPS	1.261	0.617	0.599	9
	InQSS-MOSSSL	DAPS	1.100	0.639	0.639	10
	DNSMOS [9]	DAPS	0.665	0.515	0.510	11
\	NISQA [40]	DAPS	0.663	0.519	0.389	12
<u> </u>	SSL [35]	DAPS	0.475	0.710	0.718	13
						•

* Academia Sinica, Taiwan

Conclution

- a multitask learning network can improve the performance of a single task without increasing the model complexity
- SSL-based models can achieve high performance on multi-task speech assessment and require less time to convergence than the training-from-scratch models
- a simple ensemble approach, averaging the final predictions of two models, can effectively improve the results

Conclution

- PESQ (and other similarity-depend metrics) is not a good idea.
- Non-Intrusive metrics still didn't show their reliability.
- Human hearing test is the best.

Reference

- Audio Similarity is Unreliable as a Proxy for Audio Quality
 - https://www.isca-speech.org/archive/interspeech_2022/manocha22_interspeech.html
- MOSNet: Deep Learning based Objective Assessment for Voice Conversion
 - http://arxiv.org/abs/1904.08352
- InQSS: a speech intelligibility and quality assessment model using a multi-task learning network
 - https://www.isca-speech.org/archive/interspeech_2022/chen22i_interspeech.html
- PPT from HLT 王卉