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2016.11.1 
尝试在 RNNG中增加 memory，现在只考虑结构如图下图所示。虚线框内部分是增加
的模型结构。 

 
 
现在的实现比较简单，具体过程如下： 

1.   取训练好的模型，重新输入训练集作为测试数据，获取每一步输出的	
  {stack,	
  
buffer,	
  action}384维隐状态，共有 2599716个隐状态。	
  

2.   按照隐状态对应的 29种 action分类，分布如下：	
  
action                隐状态数                         action                隐状态数 



0,REDUCE    792794  
1,SHIFT         1014128  
2,NT(S)          100096  
3,NT(PP)        95581  
4,NT(NP)        350432  
5,NT(PRN)      2420  
6,NT(VP)        146319  
7,NT(ADVP)    22447  
8,NT(SBAR)    30532  
9,NT(ADJP)    14607  
10,NT(QP)       9444  
11,NT(UCP)     497  
12,NT(WHNP)   9115  
13,NT(SINV)     2042  
14,NT(FRAG)    514  
因为有些action经常出现，例如：reduce, shift。因此大部分的隐状态也集中在这些
action上。也发现了一个异第28个 action应该被归到第17个action中，后续会来处
理）。 

3.   因为想利用模型的隐状态和memory states之间的cos距离来增加memory的影
响，因此先做了一个统计工作，验证同一个action对应的states之间的距离要
比不同action对应的states之间的距离近 。首先，求得0-27个action对应的
states的center(平均)， 其次，对每个action下的states，求其与这28个center
的cos距离。 

 
上图表示“REDUCE”对应的states与28个center的cos距离。发现还是和REDUCE本
身的center距离相对最近。同理，其他的action下的states都有类似的性质。也就是简
单证实了做法的合理性。 

4.   将28个action下的centers作为模型图中的memory states, 对应的action的
embedding后的结果作为memory actions。 

5.   重新训练模型，将每次stack, buffer, action三个lstm输出的hidden vector连接

15,NT(NAC)      411  
16,NT(WHADVP)   2638  
17,NT(PRT)    2641  
18,NT(NX)      1344  
19,NT(WHPP)  392  
20,NT(SQ)       350  
21,NT(SBARQ)  222  
22,NT(CONJP)   302  
23,NT(WHADJP)   59  
24,NT(INTJ)      127  
25,NT(X)      176  
26,NT(RRC)   47  
27,NT(LST)    38  
28,NT(PRT|ADVP) 1 
 



在一起，和memory中的28个states做cos，得到权重；按照权重组合对应的
action向量；将得到的向量组合上原始模型输出的向量，具体请见模型结构
图。 
 

结果： 
 
还在跑，暂时从模型收敛速度上看不出什么特别的提升。按理说应该会收敛的快一下
才对，但是并没有。 
 
 
改进方向： 
 
需要改进的地方很多，最容易想到的是memory太少了，简化的太多，可以不只取
center，应该还要在每类action中多选择一些memory加进去。 
2016.11.7 
1. 去除unexpected action NT(PRT|ADVP) 
2. 重新跑论文模型，控制update 5110次 (12.8289 epoch, 一般已经基本达到最优) 
3. 获取论文模型在训练集上做错的部分，共有2599716步输出，其中做错的有37447 
4. 重新跑加入28个centered memory的模型, 控制update 5110次 
5. 跑加入140个sampled memory的模型, 控制update 5110次 
6. 跑加入140个wrong memory的模型, 控制update 5110次 
7. 跑加入140个wrong memory, 且原始模型不更新，仅更新上层权重的模型， 
8. 跑加入140个wrong memory, 且在原始最优模型基础上，增量更新的模型 
 
不同模型在训练集上的训练过程： 

 
不同模型在验证集上的效果： 
 



 
 
不同模型在测试集上的效果： 
 
模型 origin center sample wrong wrong-

only 
wrong-
added 

测试集上的F1 
score 

91.4 91.26 91.2 91.6 91.25 91.54 

 
  
检查加入的wrong memory是否有用： 
 
对wrong model, 也就是原模型和mm增加后的参数一起更新的模型，获取其在训练集
上做错的部分，有35812个，其中输入进去140个的wrong memory中只有31个作对了。 
 
对wrong-only model, 也就是原模型不变，仅mm增加后的参数更新的模型，获取其在
训练集上做错的部分，有38723个，其中输入进去140个的wrong memory中只有12个作
对了。 
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1. 尝试 GPU 
结果：RNNG无法利用GPU得到速度提升：（ 
 
Glad  you  figured  it  out.  Generally  we  use  a  hidden  dim  of  256  (optionally  
you  can  also  extend  it  to  two-­layer  LSTM)  for  the  RNNLM. 
  
For  the  RNNLM,  it  can  be  easily  batched  because  the  computation  
graph  is  linear  (you  just  process  the  sequence  from  left  to  right).  In  the  
RNNG,  we  have  composition  functions  within  each  phrase  (e.g.  NP  the  
hungry  cat  would  be  composed  into  a  single  entry),  so  the  computation  
graph  no  longer  becomes  linear,  since  the  LSTM  must  also  be  
"rewinded"  after  each  composition,  see  the  paper  "Transition-­based  
dependency  parsing  with  stack  long  short-­term  memory"  (Dyer  et  al.,  
2015).  Note  that  the  composition  depends  on  the  phrase  size  within  the  
sentence,  where  a  sentence  might  have  a  phrase  of  length  3  that  will  be  
composed,  while  another  sentence  would  have  a  phrase  of  length  4.    
  
For  this  reason  the  computation  graph  for  each  sentence  would  be  
different,  and  this  is  not  easy  to  batch  in  GPU  as  each  sentence  has  a  
unique  graph.    
  
Hope  this  helps.  
 
下一步准备尝试MKL利用CPU的多核资源。  
 
2. 看了冯老师的代码 
帮助做速度上的优化 
其他？ 
 
3. 模型尝试 
 
sturc2: 

 
 



 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Discriminative model 
model Name origin origin wrong wrong-

only 
wrong2-only 

rnng If train yes yes yes no no no no 

epoch 12.2 34+ 12.3 12.2 12.2 12.2 12.2 

 
 
mem 

model no no yes yes yes yes yes 

struc no no struc1 struc1 struc2 struc2 struc2 

size no no 140 140 140 140 140 

epoch no no 12.3 1.8 3.6 439.7 37.2 

other data all all_old all all all 209 18000 

Res F1 on 
test 

91.4 92.26 91.6 91.25 91.42 91.39 91.48 

corrected 
wrong  

  31 12 16 63  

model Name  wrong 
_s2s 

wrong 
_bm 

  

rnng If train yes yes   

epoch 33.8 15.3   

 
 
mem 

model yes yes   

struc struc1 
+s2s 

struc1   

size 140 2417   

epoch 33.8 15.3   

other data all all   

Res F1 on 
test 

92.32 91.91   

corrected 
wrong  

    



下一周的计划： 
1.   MKL，多核运行提升速度 
2.   把baseline等模型跑到确保收敛，对比效果 
3.   Dynamic memory 
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1. 尝试MKL 
成功用MKL运行代码，可以使用多核资源，但是最快是在使用 2-3个核的时候达到，
最快可以提升 2-3倍。把配置过程更新到 RNNG User Guide 文档里。 
 
2 重新跑之前跑过的模型，确保收敛 

 
 
3  尝试另一种结构的MEM 。 

 
 
尝试了不同的组合方式，保持原 rnng模型不变， memory是 2099个（每种
action<=100）。 

1.   直接加：test	
  f1	
  92.37，	
  输入的 memory判对了 260	
  
2.   手动加权重：	
  

a.   0.01：test	
  f1	
  92.32	
  
b.   0.1：test	
  f1	
  92.34	
  
c.   2：test	
  f1	
  92.16	
  

3.   加序列权重，在全部训练集上训练：test	
  f1	
  92.2，输入的 memory判对了 260	
  
4.   加矩阵权重，在全部训练集上训练：test	
  f1	
  92.13，输入的 memory判对了 275	
  

 

Discriminative model 
model Name origin static memory dynamic memory 
rnng If train yes yes yes  yes   

 
 
mem 

model no yes yes  yes   

struc no struc1 struc1  struc2 
no W 
before 
cos 

  

size no 5 100  10   

other data all all all  all   

Res F1 on 
test 

92.32 running running  92.54   
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1. Debug  
发现了代码中 cos算的有问题，实际是数据输入有问题。 
 
2. 尝试第二种 mem结构 

 
不同的组合方式，保持原 rnng模型不变， memory是 140个，每个 action 5个 

1.   直接加	
  	
  test	
  f1:	
  92.31	
  	
  输入的 memory判对了 0个	
  
2.   手动调整权重	
  

a.   10：	
  test	
  f1:	
  92.32	
  	
  
b.   100：test	
  f1:	
  92.29	
  	
  输入的 memory判对了 38个	
  

3.   加 gate，大于某个门限之后直接切换到 memory	
  
a.   gate>0.9:	
  test	
  f1:	
  92.12	
  	
  输入 memory判对了 109	
  
b.   gate>0.95：test	
  f1:	
  92.22	
  	
  输入 memory判对了 109	
  
c.   gate>0.99：test	
  f1:	
  92.31	
  	
  输入 memory判对了 109	
  
d.   gate>0.999：test	
  f1:	
  92.32	
  	
  输入 memory判对了 109	
  

发现了一个 mem的问题，和记住的 mem距离近的不一定是同样的类别，导致记住的
men带来了很大的负面作用。 
 
3. 重新跑模型 
 

Discriminative model    seed=4176871112 
model Name origin origin 

again 
static memory dynamic memory 

rnng If train yes yes no no no yes yes  

 
 
mem 

model no no yes yes yes yes yes  

struc no no struc1 struc1 struc2 struc1 struc2  

size no no 5*28 5*28 5*28 10*28 10*28  

other data all all all all all all all  

optimize sgd1.0 Sgd1.0 Sgd1.0 Sgd0.1 Sgd0.1 Sgd1.0 Sgd1.0  



 
总体看来效果都不是很好：原来添加 mem的方式似乎比 one hot向量作为 mem的方式
好一些；之前尝试的动态模型的效果也不好；只有在保证原模型不变加 mem同时调整
learning rate=0.1时的效果要比 baseline好个 0.09. 
  

Res F1 on 
test 

92.32 92.32 91.95 92.41 92.37 92.05 91.99  



TSNE  
由于原始数据量很大（250多万）不好画，采样了一部分。对 28种 action，每个 action
采样 500个作对的样本，50个做错的样本。一共 11409个样本（有些 action总体的样
本数不足 550）。 
 
对错样本的比较，红色为做对的样本，蓝色为做错的样本： 

 
right vs. wrong 

不同 action的样本分布，28种 action用 4种颜色*7种形状区分： 

 
                                             Different actions 
 
不同 action下，对错样本的比较，红色为对，蓝色为错：  



 
     action 0                       action 1 

 
       action 2                                                           action 3 

 
                          action 4             action 5 

 
     action 6                                  action 7 



 
                             action 8             action 9 

 
                            action 10            action 11 
 
其他 action的图基本一致，这里就不贴出来了。。 


