

RNNG + Memory 实验报告
张诗悦

2016.11.1
尝试在 RNNG中增加 memory，现在只考虑结构如图下图所示。虚线框内部分是增加
的模型结构。

现在的实现比较简单，具体过程如下：

1. 取训练好的模型，重新输入训练集作为测试数据，获取每一步输出的	
 {stack,	

buffer,	
 action}384维隐状态，共有 2599716个隐状态。	

2. 按照隐状态对应的 29种 action分类，分布如下：	

action 隐状态数 action 隐状态数

0,REDUCE 792794
1,SHIFT 1014128
2,NT(S) 100096
3,NT(PP) 95581
4,NT(NP) 350432
5,NT(PRN) 2420
6,NT(VP) 146319
7,NT(ADVP) 22447
8,NT(SBAR) 30532
9,NT(ADJP) 14607
10,NT(QP) 9444
11,NT(UCP) 497
12,NT(WHNP) 9115
13,NT(SINV) 2042
14,NT(FRAG) 514
因为有些action经常出现，例如：reduce, shift。因此大部分的隐状态也集中在这些
action上。也发现了一个异第28个 action应该被归到第17个action中，后续会来处
理）。

3. 因为想利用模型的隐状态和memory states之间的cos距离来增加memory的影
响，因此先做了一个统计工作，验证同一个action对应的states之间的距离要
比不同action对应的states之间的距离近 。首先，求得0-27个action对应的
states的center(平均)， 其次，对每个action下的states，求其与这28个center
的cos距离。

上图表示“REDUCE”对应的states与28个center的cos距离。发现还是和REDUCE本
身的center距离相对最近。同理，其他的action下的states都有类似的性质。也就是简
单证实了做法的合理性。

4. 将28个action下的centers作为模型图中的memory states, 对应的action的
embedding后的结果作为memory actions。

5. 重新训练模型，将每次stack, buffer, action三个lstm输出的hidden vector连接

15,NT(NAC) 411
16,NT(WHADVP) 2638
17,NT(PRT) 2641
18,NT(NX) 1344
19,NT(WHPP) 392
20,NT(SQ) 350
21,NT(SBARQ) 222
22,NT(CONJP) 302
23,NT(WHADJP) 59
24,NT(INTJ) 127
25,NT(X) 176
26,NT(RRC) 47
27,NT(LST) 38
28,NT(PRT|ADVP) 1

在一起，和memory中的28个states做cos，得到权重；按照权重组合对应的
action向量；将得到的向量组合上原始模型输出的向量，具体请见模型结构
图。

结果：

还在跑，暂时从模型收敛速度上看不出什么特别的提升。按理说应该会收敛的快一下
才对，但是并没有。

改进方向：

需要改进的地方很多，最容易想到的是memory太少了，简化的太多，可以不只取
center，应该还要在每类action中多选择一些memory加进去。
2016.11.7
1. 去除unexpected action NT(PRT|ADVP)
2. 重新跑论文模型，控制update 5110次 (12.8289 epoch, 一般已经基本达到最优)
3. 获取论文模型在训练集上做错的部分，共有2599716步输出，其中做错的有37447
4. 重新跑加入28个centered memory的模型, 控制update 5110次
5. 跑加入140个sampled memory的模型, 控制update 5110次
6. 跑加入140个wrong memory的模型, 控制update 5110次
7. 跑加入140个wrong memory, 且原始模型不更新，仅更新上层权重的模型，
8. 跑加入140个wrong memory, 且在原始最优模型基础上，增量更新的模型

不同模型在训练集上的训练过程：

不同模型在验证集上的效果：

不同模型在测试集上的效果：

模型 origin center sample wrong wrong-

only
wrong-
added

测试集上的F1
score

91.4 91.26 91.2 91.6 91.25 91.54

检查加入的wrong memory是否有用：

对wrong model, 也就是原模型和mm增加后的参数一起更新的模型，获取其在训练集
上做错的部分，有35812个，其中输入进去140个的wrong memory中只有31个作对了。

对wrong-only model, 也就是原模型不变，仅mm增加后的参数更新的模型，获取其在
训练集上做错的部分，有38723个，其中输入进去140个的wrong memory中只有12个作
对了。

2016.11.14
1. 尝试 GPU
结果：RNNG无法利用GPU得到速度提升：（

Glad you figured it out. Generally we use a hidden dim of 256 (optionally
you can also extend it to two-­layer LSTM) for the RNNLM.

For the RNNLM, it can be easily batched because the computation
graph is linear (you just process the sequence from left to right). In the
RNNG, we have composition functions within each phrase (e.g. NP the
hungry cat would be composed into a single entry), so the computation
graph no longer becomes linear, since the LSTM must also be
"rewinded" after each composition, see the paper "Transition-­based
dependency parsing with stack long short-­term memory" (Dyer et al.,
2015). Note that the composition depends on the phrase size within the
sentence, where a sentence might have a phrase of length 3 that will be
composed, while another sentence would have a phrase of length 4.

For this reason the computation graph for each sentence would be
different, and this is not easy to batch in GPU as each sentence has a
unique graph.

Hope this helps.

下一步准备尝试MKL利用CPU的多核资源。

2. 看了冯老师的代码
帮助做速度上的优化
其他？

3. 模型尝试

sturc2:

Discriminative model
model Name origin origin wrong wrong-

only
wrong2-only

rnng If train yes yes yes no no no no

epoch 12.2 34+ 12.3 12.2 12.2 12.2 12.2

mem

model no no yes yes yes yes yes

struc no no struc1 struc1 struc2 struc2 struc2

size no no 140 140 140 140 140

epoch no no 12.3 1.8 3.6 439.7 37.2

other data all all_old all all all 209 18000

Res F1 on
test

91.4 92.26 91.6 91.25 91.42 91.39 91.48

corrected
wrong

 31 12 16 63

model Name wrong
_s2s

wrong
_bm

rnng If train yes yes

epoch 33.8 15.3

mem

model yes yes

struc struc1
+s2s

struc1

size 140 2417

epoch 33.8 15.3

other data all all

Res F1 on
test

92.32 91.91

corrected
wrong

下一周的计划：
1. MKL，多核运行提升速度
2. 把baseline等模型跑到确保收敛，对比效果
3. Dynamic memory

2016.11.21
1. 尝试MKL
成功用MKL运行代码，可以使用多核资源，但是最快是在使用 2-3个核的时候达到，
最快可以提升 2-3倍。把配置过程更新到 RNNG User Guide 文档里。

2 重新跑之前跑过的模型，确保收敛

3 尝试另一种结构的MEM 。

尝试了不同的组合方式，保持原 rnng模型不变， memory是 2099个（每种
action<=100）。

1. 直接加：test	
 f1	
 92.37，	
 输入的 memory判对了 260	

2. 手动加权重：	

a. 0.01：test	
 f1	
 92.32	

b. 0.1：test	
 f1	
 92.34	

c. 2：test	
 f1	
 92.16	

3. 加序列权重，在全部训练集上训练：test	
 f1	
 92.2，输入的 memory判对了 260	

4. 加矩阵权重，在全部训练集上训练：test	
 f1	
 92.13，输入的 memory判对了 275	

Discriminative model
model Name origin static memory dynamic memory
rnng If train yes yes yes yes

mem

model no yes yes yes

struc no struc1 struc1 struc2
no W
before
cos

size no 5 100 10

other data all all all all

Res F1 on
test

92.32 running running 92.54

2016.11.28
1. Debug
发现了代码中 cos算的有问题，实际是数据输入有问题。

2. 尝试第二种 mem结构

不同的组合方式，保持原 rnng模型不变， memory是 140个，每个 action 5个

1. 直接加	
 	
 test	
 f1:	
 92.31	
 	
 输入的 memory判对了 0个	

2. 手动调整权重	

a. 10：	
 test	
 f1:	
 92.32	
 	

b. 100：test	
 f1:	
 92.29	
 	
 输入的 memory判对了 38个	

3. 加 gate，大于某个门限之后直接切换到 memory	

a. gate>0.9:	
 test	
 f1:	
 92.12	
 	
 输入 memory判对了 109	

b. gate>0.95：test	
 f1:	
 92.22	
 	
 输入 memory判对了 109	

c. gate>0.99：test	
 f1:	
 92.31	
 	
 输入 memory判对了 109	

d. gate>0.999：test	
 f1:	
 92.32	
 	
 输入 memory判对了 109	

发现了一个 mem的问题，和记住的 mem距离近的不一定是同样的类别，导致记住的
men带来了很大的负面作用。

3. 重新跑模型

Discriminative model seed=4176871112
model Name origin origin

again
static memory dynamic memory

rnng If train yes yes no no no yes yes

mem

model no no yes yes yes yes yes

struc no no struc1 struc1 struc2 struc1 struc2

size no no 5*28 5*28 5*28 10*28 10*28

other data all all all all all all all

optimize sgd1.0 Sgd1.0 Sgd1.0 Sgd0.1 Sgd0.1 Sgd1.0 Sgd1.0

总体看来效果都不是很好：原来添加 mem的方式似乎比 one hot向量作为 mem的方式
好一些；之前尝试的动态模型的效果也不好；只有在保证原模型不变加 mem同时调整
learning rate=0.1时的效果要比 baseline好个 0.09.

Res F1 on
test

92.32 92.32 91.95 92.41 92.37 92.05 91.99

TSNE
由于原始数据量很大（250多万）不好画，采样了一部分。对 28种 action，每个 action
采样 500个作对的样本，50个做错的样本。一共 11409个样本（有些 action总体的样
本数不足 550）。

对错样本的比较，红色为做对的样本，蓝色为做错的样本：

right vs. wrong

不同 action的样本分布，28种 action用 4种颜色*7种形状区分：

 Different actions

不同 action下，对错样本的比较，红色为对，蓝色为错：

 action 0 action 1

 action 2 action 3

 action 4 action 5

 action 6 action 7

 action 8 action 9

 action 10 action 11

其他 action的图基本一致，这里就不贴出来了。。

