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Abstract

Automatic speech and speaker recognition are traditionally treated as two
independent tasks and are studied separately. The human brain in contrast
deciphers the linguistic content and the speaker traits from the speech in a
collaborative manner. This key observation motivates the work presented in this
article. A collaborative joint training approach based on multi-task recurrent
neural network models is proposed, where the output of one task is
back-propagated to the other tasks. This is a general framework for learning
collaborative tasks, and fits well with the goal of joint learning of automatic
speech and speaker recognition. Through a comprehensive study, it is shown that
the multi-task recurrent neural net models deliver improved performance on both
automatic speech and speaker recognition tasks as compared to single-task
systems. The strength of such multi-task collaborative learning is analyzed and
the impact of various training configurations is investigated.

Keywords: Speech Recognition; Speaker Recognition; Recurrent Neural
Networks; Multi-task Learning; Joint training

1 Introduction

Automatic speech recognition (ASR) and speaker recognition (SRE) are two im-
portant tasks in speech processing. Traditionally, these two tasks are treated inde-
pendently and are studied separately. This leads to task-specific learning methods
and models. However, this independent treatment is not the way that we humans
process speech signals: we always simultaneously decipher speech content and other
meta information including languages, speaker characteristics, emotions etc. This
‘multi-task processing’ relies on two premises: (1) all these tasks share the same sig-
nal processing pipeline in our aural system, and (2) they are mutual beneficial, i.e.,
the success on one task improves the performance on others. This observation has
motivated us to consider the possibility to deal with multiple tasks with a unified
model. In this paper, we focus on speech and speaker recognition, and demonstrate

that they can be addressed by a single neural-net model based on deep learning.
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1.1 Speech and speaker recognition: close correlation

The close correlation between ASR and SRE has been recognized for some time.
Firstly, many common techniques have been designed and employed for the two
tasks, from the use of MFCC (Mel-frequency cepstral coefficients) features to the
HMM/GMM (hidden Markov model/Gaussian mixture model) modeling frame-
work. Secondly, research in both areas has benefited by inter-exchange of ideas.
For example, the success of deep neural networks (DNN) in ASR [1, 2] has mo-
tivated the usage of neural models in SRE [3, 4]. Thirdly, it has been observed
that employing knowledge derived from one task for solving the other task is often
beneficial. For example, speaker identities (e.g., i-vectors) derived from SRE have
been found to improve the ASR accuracy [5, 6], and phone posteriors derived by
ASR have been successfully applied to improve SRE performance [7, 8, 9, 10, 11].
BenZeghiba et al. [12] proposed a joint decoding algorithm for ASR and SRE, by
searching for phone and speaker identities that maximize their joint probability. All
the above studies try to exploit the correlation between ASR and SRE for mutual
benefit; however, none of them formulates the idea as a unified model that learns
and addresses the two tasks jointly.

The development of deep learning methods in speech processing has opened new
research avenues. Since 2011, DNN and its recurrent variant, recurrent neural net-
works (RNN) have become the new state-of-the-art for ASR [13, 14]. Recently, the
same model has also achieved outstanding results in SRE, at least in text-dependent
tasks [15]. The deep RNN structure has two main influences: first, the structural
depth (multiple layers) produces high-level features that are more task-oriented; sec-
ond, the temporal depth (recurrent connections) allows learning complex temporal
patterns. Both the modern ASR and SRE systems leverage this to their advantage
and achieve their respective state-of-the-art performances. A natural question that
arises is: Given that both the two tasks use deep RNN models, would it be possible
to merge the two RNN models into a single one that can learn ASR and SRE jointly
and infer the two tasks simultaneously, as we human do all the time?

1.2 Difficulty with information competition

The ‘multi-task learning’ [16] makes the joint training and inference for correlated
tasks possible. The basic idea of this learning approach is that if two tasks are
correlated, then part of their model structures can be shared. This structure sharing
allows the two tasks to share the data statistics, leading to more robust models. A
typical multi-task learning strategy in the deep learning framework is to share the
low-level layers of neural nets, while keeping the higher-level layers task-dependent.
This is essentially a feature sharing strategy [17].

This multi-task learning approach based on structure sharing has been widely used
in multilingual speech recognition, where the ASR tasks on different languages are
treated as correlated, and the feature extraction component can be shared, due to
the commonality of human languages [18, 19, 20]. This approach has been found
to be especially useful for low-resource languages for which only limited training
data are available [21, 22]. As another example, Chen and colleagues [23] found
that phone recognition and grapheme recognition can be treated as two correlated
tasks, and a DNN model trained with the two tasks as objectives outperforms the
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ones trained only with phone targets. Other multi-task learning research work has
been reviewed in [17].

While this structure sharing approach, in particular feature sharing, is simple
and effective, it is not readily applicable to joint training ASR and SRE. This is
because the effective features required for the two tasks are fundamentally differen-
t: ASR requires features involving linguistic content as much as possible, whereas
SRE requires features with rich speaker information. These two requirements are
indeed mutually exclusive: to represent linguistic content, it is desirable to suppress
the speaker-related information and vice-versa for the speaker content. Such tasks
using different parts of information in the input data are regarded as ‘information-
competitive’ tasks. For these tasks, the conventional multi-task learning methods
based on structure/feature sharing are clearly not ideal. Unfortunately, many corre-
lated tasks fall under this category, e.g., language identification and speaker recog-
nition, emotion recognition and speech recognition. Multi-task joint learning for
such information-competitive tasks has not been fully investigated.

1.3 Our proposal

A key observation for information-competitive tasks is that they are ‘collaborative’,
which means that their performance can be boosted by leveraging information from
each other. This collaborative relation among tasks can be leveraged to design a
new multi-task joint learning framework. This framework is not based on struc-
ture sharing; instead it relies on inter-task information propagation, with which
the performance of each task can be boosted by the auxiliary information derived
from other tasks. We call this learning framework for collaborative tasks ‘collabo-
rative joint learning’, or simply ‘collaborative learning’. This learning framework is
generic and as such can be applied to any collaborative tasks as long as they are
complementary, for instance ASR and SRE.

This paper presents such a collaborative learning structure based on deep neural
net models. The key idea is to merge task-specific neural models with inter-task
recurrent connections into a unified model. This model fits well the ASR/SRE joint
training. In this scenario, the speech content and speaker identity are produced at
each frame step by the ASR and SRE components respectively. By exchanging these
bits of information, performances on both ASR and SRE are sought to be improved.
This leads to a joint and simultaneous learning for the two tasks, simulating the
process of language acquisition in human beings (c.f. Section 2).

A preliminary version of this paper has been published in arXiv [24]. This paper
extends [24] with several contributions including: (1) presentation of more evidence
from cognitive studies on human auditory systems to support the collaborative join-
t learning idea; (2) detailed analysis of the modeling strength of the collaborative
learning and the multi-task recurrent neural net model; (3) extension of the ex-
perimental work from fully-labeled training to partially-labeled training, where the
training data are labeled with targets of one partial task; (4) presentation of more
comprehensive experimental results to show how ASR and SRE impact each other
in the collaborative learning framework.

Note that Li et al. [25] proposed a similar model structure with primary focus
on ASR with SRE being treated as an auxiliary task. We demonstrate that the
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recurrent structure is more generic than providing auxiliary information; it is a
way of collaborative learning that can jointly improve the performance of all the
constituent collaborative tasks.

The rest of the paper is organized as follows: Section 2 presents some cognitive
evidence for speech and speaker collaborative learning, and Section 3 presents the
learning framework based on multi-task recurrent models and analyzes the strength
of this learning approach. Section 4 describes details of the ASR/SRE multi-task
recurrent model, and Section 5 reports the experimental results. The paper is con-
cluded in Section 6, with some ideas for future work.

2 Cognitive evidence

The strong connection between speech and speaker perception has been found in
numerous cognitive studies from infant language development to audio perception
in adults.

Research on information disentanglement in language development of infants show
that in early developmental stages, infants can not distinguish linguistic content
from other factors e.g., gender and emotion. They gradually learn which information
is relevant for each task, thus enabling them to distinguish latent factors such as
semantic meaning and speaker identity. Walker et al. [26] reported that infants
are sensitive to gender information in their early state of language development.
Houston and colleagues [27, 28] found that infants at 7.5 months treat the same
word from male speakers and female speakers as different words, while infants at
10.5 months could generalize different instances of the same word across utterances
of the opposite sex.

The strong influence of speech and speaker perception on each other is highlighted
in a study by Johnson [29], where it was found that 7-month-old infants could detect
speaker change when the pronounced sentences were familiar to them. If the words
were in another language or the sentences were read in reverse, they could not detect
the speaker change.

According to the PRIMIR framework presented by Werker and colleagues [30],
understanding performance changes of an infant in any one task requires considera-
tion of performance in other tasks, though the inter-task mutual impact is different
at different times in development.

All the above research, and in particular the PRIMIR theory, provides strong
support for our study on multi-task collaborative learning. The network structure
shown in Fig. 1 (elaborated in the next section) is like the auditory system of an
infant: the shared acoustic pre-processing component corresponds to the ‘bias filter’
in PRIMIR and plays the role of removing irrelevant information like background
noise; the single-task network is the ‘development structure’ that can pick up task-
dependent information for specific tasks; the multi-task recurrence is the ‘inter-
task co-development structure’ that leverages correlations among different language
tasks.

Multi-task information disentanglement is not only an important process for in-
fants when developing their language, but also an important tool that adults use
everyday to process various perceptual tasks. For example, Creelman et al. [31]
found that word recognition accuracy decreased in the presence of noise when the

Page 4 of 22



Tang et al.

identity of the talker was unpredictable from trial to trial. The same phenomenon
was also found by Summerfield [32], Verbrugge et al. [33], Mullennix et al. [34]
and Nusbaum et al. [35]. All these studies conclude that speaker variation impacts
word recognition in a significant way. Johnson [36] summarized these studies and
described a ‘talker normalization’ framework, which argues that a listener needs
to locate a talker in a ‘talker coordinate’ to assist the recognition of the following
word. The coordinate can be established very quickly at the very beginning of the
listening task, by estimating the talker’s vocal track length or retrieving words in
his/her memory that are similar to the talker’s words.

Another interesting study is the work conducted by Eklund and colleagues [37].
They found evidence of a connection between talker perception and vowel percep-
tion, this time in a study of whispered speech. When listeners misidentified the sex
of the talker their vowel identification error rate was 25%, but when they correctly
identified the sex of the speaker the vowel error rate was only 5%. This suggests
that talker perception and vowel perception are interconnected with each other.
The argument of the connection between word recognition and speaker identifica-
tion was clarified by Nygaard [38]. It was clearly demonstrated that linguistic and
non-linguistic properties are integrally related components of the same acoustic
speech signal, and consequently, the speech perception process.

The above studies suggest that the inter-link between speech and speaker recogni-
tion tasks not only plays a role in infant language development, but also in adult’s
daily perceptual tasks. This provides further support for our research, that multiple
correlated tasks should not only be considered in model training, but also be consid-
ered during inference. The multi-task recurrent architecture that will be elaborated
in the next section provides a framework to train and infer various tasks jointly in
a principled way.

3 Collaborative joint learning

The cognitive evidence has motivated us to consider a joint training architecture
where collaborative tasks can exchange information with each other so that perfor-
mance of the individual tasks can be simultaneously improved. This section first
presents a joint learning framework for collaborative tasks based on an inter-task
recurrent neural network structure, and then analyzes the strength of the proposed
model. Finally we compare the recurrent model and the feature sharing approach,
highlighting their respective advantages and application scenarios.

3.1 Multi-task recurrent model
An ideal model for collaborative learning should at least possess the following two
properties:

e it should be a unified model where the components for individual tasks are
homogeneous in model structure and learning scheme, so that they can be
trained jointly and simultaneously as a single model;

e the components for individual tasks should be able to collaborate with each
other, i.e., they should help each other in both training and inference.

A multitude of model structures satisfy these requirements, e.g., joint factor anal-
ysis (JFA) has been widely used to model speaker traits and channel effect simul-
taneously [39]. In this paper, we are most interested in deep neural models due to
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Figure 1 The multi-task recurrent neural model for collaborative learning.

their superior performance in speech and speaker recognition. Motivated by the cog-
nitive evidence, a possible collaborative learning structure with deep neural models
is illustrated in Fig. 1, where each individual task is modeled by a deep neural mod-
el, and some inter-task connections are introduced to propagate information across
tasks.

This structure perfectly meets the requirements for collaborative learning: it is a
unified model purely based on neural networks and is therefore homogeneous, and
the individual components help each other by the recurrent information exchange.
Note that the inter-task connections propagate information from output back to
input, so the entire structure is an RNN model — the only difference from the vanilla
RNN model is that the recurrent connections are at the task level. We denote this
model as a multi-task recurrent model, and each task-specific neural structure as a
‘component’. The information propagated back is called as ‘feedback information’,

and is referred as ‘auxiliary information’ when fed into a component.

3.2 Strength of multi-task recurrent model

The strength of the multi-task recurrent model can be understood in different ways.
We focus on two perspectives: for task specific component the model offers context-
aware learning; when viewed in its entirety, the model provides a mechanism for

task-specific information disentanglement in the supervised learning paradigm

3.2.1 Context-aware learning
Context-aware learning involves extra information when training a neural model.
For example, [5] introduced a speaker vector (i-vector) as additional input to im-
prove DNN-based ASR, and [40] showed that incorporating the rate of speaking
improved their ASR system. Intuitively, the extra information can provide more
cues to discriminate the targets; more formally, involving the extra information
leads to a context-aware conditional model that is easier to train.

Consider a particular component in the recurrent structure, e.g., the ASR com-
ponent. Let x and ¢ denote the primary input features (e.g., Fbank) and the targets
(e.g., phones) respectively, and ¢ be the extra input obtained from other components
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(e.g., speaker vector). With the information ¢, the model estimates the probability
P(t|z, c). If we regard the extra input ¢ as a context indicator, the model is context-
aware. Note that the context-aware model is a conditional model with the context
c as the condition. In contrast, the single-task model, which can be formulated as
P(t|x), is essentially a marginal model ) P(t|x,c)P(c|x) where c is latent.

The shift from a marginal model to a conditional model offers at least two advan-
tages: firstly, the context probability P(c|x) is learned by a separate model, which is
not only more flexible but also more effective, as more powerful models can be used.
Secondly, the conditional model is often easier to train than the marginal model,
since the latter tends to involve a more uneven cost function (with more modes),

due to the effect of the latent variable c.

3.2.2 Supervised information disentanglement

Another strength of the multi-task recurrent model is its capability of disentangling
task-sensitive information. Information entanglement is a major challenge in most
machine learning tasks. Taking ASR and SRE as an example, the causal factors
for the two tasks (linguistic contents and speaker traits) are mixed together and
are buried in raw signals. Extracting the most effective information (factors) for
each task is one of the most challenging subjects in both ASR and SRE research.
For a long time, researchers focused on designing elegant filters and transforms to
obtain task-sensitive features and suppress irrelevant ones. Recently, deep neural
models have been widely used to learn task-sensitive features through a layer-by-
layer structure [41].

A successful approach to the layer-wise feature learning is through unsupervised
learning methods such as stacked RBM [42] or stacked autoencoder [43]. One of
the advantages of the unsupervised learning approach is that it can disentangle
prominent factors within the signal [41]. This has been used to understand the
success of the unsupervised pre-training methods, where the pre-trained models are
used to disentangle information, by which the task-related features can be easily
extracted by simple fine tuning [41, 44]. For supervised learning of DNN models,
this information disentanglement is however not so obvious. Instead of disentangling
information and then selecting the relevant features, supervised learning is more like
a layer-by-layer information filtering: it chooses a particular task, and then tries to
select features that are most relevant to the task and suppress irrelevant ones. A
shortcoming of this process is that there is only one task to supervise the information
filtering, which is sometimes not very effective.

With the collaborative learning using multi-task recurrent model, tasks collabo-
rate together to discover their own desired feature. Specifically, each task informs
others which information it prefers and which information it does not, which can
help other tasks in feature extraction. For example, if component A informs com-
ponent B that it wants some piece of information, and component B informs com-
ponent A that it does not want the information, there is a strong evidence that the
information is closely related to task A. This collaborative information extraction
process is essentially an information disentanglement procedure, and is within the
supervised learning paradigm. We conjecture that this information disentanglement
leads to more precise feature extraction for each individual task compared to the
single-task systems, as the latter is supervised by and oriented to a single task.
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Figure 2 Various multi-task joint learning models.

3.3 Comparison of two joint learning models

The structure sharing approach and the multi-task recurrent model are both effec-
tive methods for multi-task joint learning, though with very different rationalities.
For a clear comparison, the two approaches are illustrated in Fig 2, plot (a) and (b)

respectively. Several important differences are listed as follows.

e The rationality of structure sharing is to accumulate statistical strength from
individual tasks so that each model can be trained more robustly. The ratio-
nality of the multi-task recurrent model, however, lies in borrowing informa-
tion from each other so that more accurate models for individual tasks can be
learned. Analogous to ‘structure sharing’, this can be regarded as ‘information
sharing’.

e The structure sharing approach tends to be more effective for tasks with simi-
lar targets. For example, in multilingual ASR, the targets of all the individual
components are phone discrimination. This target similarity enables sharing
in feature extraction and in model sub-structures. In contrast, the multi-task
recurrent model is more effective for tasks with heterogeneous targets, for
which information from each of them is collaborative.

e The structure sharing approach focuses only on model training — once the
models have been trained, the task specific models are often used indepen-
dently. The multi-task recurrent model, in contrast is a unified model, so the

collaborative tasks must be learnt as well as inferred simultaneously.
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e Due to the accumulation of sufficient statistics across tasks, the structure
sharing approach is particularly useful in scenarios with data sparsity, making
it a good tool in transfer learning (e.g., in minor language ASR). For the
multi-task recurrent model, however, all individual components should be well
trained with sufficient data, otherwise the joint model may perform poorly.

e Due to the interaction among individual components, multi-task recurrent
models are generally more difficult to train as compared to models with shared
structure.

The differences listed above are not absolute. For instance, structure sharing can
be also used for tasks with heterogeneous targets, in which case only one task is
of primary concern and others are auxiliary. Moreover, the two approaches can be
combined to construct more complex multi-task learning models, e.g., the models
shown in Fig. 2 (c) and (d). This paper focuses on the typical multi-task recurrent

model shown in Fig. 2 (b), and leaves more complex variants for future exploration.

4 Multi-task recurrent model for ASR and SRE

Applying the multi-task recurrent model for ASR and SRE is straightforward. We
choose the structure illustrated in Fig. 1, where the two neural models in the dia-
gram correspond to the ASR and SRE components respectively. We first describe
the single-task baseline model used in our study, and then present the multi-task

recurrent model.

4.1 Basic single-task model

The state-of-the-art architecture for ASR is based on RNN, in particular the long
short-term memory (LSTM) model [13]. This model has also delivered good per-
formance on SRE task [15]. We therefore choose LSTM to build the single-task
baseline systems for both ASR and SRE. The modified LSTM structure proposed

in [14] is used. The network structure is shown in Fig. 3.

i

|

!
>

|

|

I

|

projection
}

Figure 3 The LSTM model for ASR and SRE single-task baselines. The picture is reproduced
from [14].

-
c
)
=
S
[S)
1)
—
S
o Ly & Ly
c | 5
= (@]
|z |
1
| r
L :p‘J

Page 9 of 22



Tang et al. Page 10 of 22

The associated computations are as follows:

iv = o(Wigmy + Wipri—1 + Wicer 1 + b;)

fr = o(Weaxe + Wepre—1 + Wyecr—1 + by)

ce = fiOc1+i©g(Weery + Wepre—y + be)
o = o(Wogxs + Worri—1 + Woect + bo)
my = 0O h(c)

re = Wemmg

pt = Wpmmy

ye = Wyry + Wyppe + by

In the above equations, the W terms denote weight matrices and those associated
with the cells were constrained to be diagonal in our implementation. The b terms
denote bias vectors. x; and y; are the input and output symbols respectively; i¢, f;,
o0; represent respectively the input, forget and output gates; ¢; is the cell and m; is
the cell output. r; and p; are two output components derived from my, where r; is
recurrent and fed to the next time step, while p; is not recurrent and contributes to
the present output only. o(+) is the logistic sigmoid function, and g(-) and h(-) are
non-linear activation functions, often chosen to be hyperbolic. ® denotes element-
wise multiplication.

4.2 Multi-task recurrent model
We use the recurrent LSTM model used in the single-task systems to build the ASR
component and the SRE component, and introduce inter-task recurrent connections
to construct the multi-task recurrent model. Note that there is a bunch of design
choices need to consider. The first one is: where should the recurrent information
be extracted from. It could be extracted from the cell ¢; or cell output my, or from
the penultimate layer r; or p;, or from the output y;. Another question is: which
computation block will receive the recurrent information? The information could
simply be augmented to the input variable z;, but could also be passed on to the
input gate i, the output gate o, the forget gate f; or the non-linear function g(-).
Finally, the computing block that the information is extracted from is not neces-
sarily the same for different tasks, nor is the block that receives the information.
However in this study, we consider only the symmetric structure for simplicity.

With all the above alternative options, the multi-task recurrent model is rather
flexible. The cognition evidence doesn’t suggest any particular structure, although
some general principles exist (e.g., the information exchange probably takes place
during some intermediate steps rather than from the very beginning). For this
reason, we need to experiment with a few alternate configurations of the network
structure.

An example structure is shown in Fig. 4, where the recurrent information is ex-
tracted from both the recurrent projection r; and the non-recurrent projection py,
and the information is used as additional input to the non-linear function g(-). We

use the superscript a and s to denote the ASR and SRE tasks respectively. The
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Figure 4 Multi-task recurrent model for ASR and SRE, an example.

computation for ASR can be expressed as follows (SRE recurrent information is

underlined):
it = oWz + Wiri_y + Witef_y +b7)
[t = oWiae + Wiy + Wiiel | +b%)
g¢ = gWaal + Worl  + b2 + Wairi + Wit 1)
¢ = ffoda+ifogl
of = o(Wgai+Wari,+ Wi +1b;)
mi = of ®h(cf)
ry = Wi, m{
Py = Wp,mi

yi = Wyrd + Wypi + by
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and the computation for SRE is as follows (ASR recurrent information is under-
lined):

ii = o(Wha +Wiri | +Wici_| +1b5)
P o= o(Wiae + Wiy + Wi,y +b5)

g = gWhay + Wiri_y + b5+ Watry + Waept_ )
¢ = ffOc 1+ 0g

0 = o(Wiai +Wiriy +Wie +b3)

mi = o] ©h(c})

ry = W: mj

pi = Wpnmj

yi = Wer + Wo,pi + b5

4.3 Full and partial collaborative training

The multi-task recurrent model described above can be trained with complete or
incomplete data. Complete data are labelled by both speech and speaker targets for
each training sample; incomplete data, in contrast, are labelled by only one partic-
ular target, either speech or speaker. We call the training with complete data ‘full
collaborative training’, and the training with incomplete data ‘partial collaborative
training’. In the previous study [24], we have shown that full collaborative train-
ing can improve performance on both ASR and SRE, however partial collaborative
training has not been fully investigated. Since most existing large-scale databas-
es are designed for a particular task and so are labelled incompletely, empirical
evidence for partial collaborative training is very important.

Intuitively, partial collaborative training is analogous to teaching a child different
knowledge types one at a time in a random and alternating manner, with the hope
that each knowledge type contributes to the better understanding of other types.
In practice, there are a number of issues that need to be addressed, e.g., how to
balance the gradient contribution from each task, how the tasks impact each other
through the recurrent connections, etc. We will discuss these issues in the following

section.

5 Experiments

In this section, we first present the experiments with full collaborative training, and
then report experiments with partial collaborative training, where the ASR and
SRE components were trained with the Switchboard (SWB) and Fisher database
respectively. All the experiments were conducted with the Kaldi toolkit [45].

5.1 Full collaborative training

In the first experiment, we study full collaborative training where the training data
are labeled with both speech content (phones) and speaker identifies. The costs
on both speaker and phone targets are added together, and the gradient on the
accumulated cost is computed and back-propagated to update the entire network.
WSJ database has been used in this experiment. As opposed to the preliminary
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results presented in our earlier work [24], the results presented here use the WSJ
corpus down-sampled to 8k Hz. This was done for uniformity in sampling rate across
all the databases used in this study, viz., WSJ, Switchboard, Fisher and Eval2000.

5.1.1 Data

e Training set: This set comprises all the data in train_si284 consisting of 282
speakers and 37,318 utterances, with about 50-155 utterances per speaker.
This set was used to train an ASR baseline based on LSTM, and two SRE
baselines based on LSTM and i-vectors respectively. The same data were also
used to train the proposed multi-task recurrent model.

e Test set: This set includes three datasets (devl92, eval92 and eval93). It con-
sists of 27 speakers and 1,049 utterances in total. It was used to evaluate
the performance of both ASR and SRE. For SRE, the evaluation consists
of 21,350 target trials and 528,326 non-target trials, constructed from the
speakers in the test set.

5.1.2 ASR baseline

The ASR system was built largely following the Kaldi WSJ s5 nnet3 recipe, except
that we have used a single LSTM layer for simplicity. The number of cells in the hid-
den layer was set to 1,024, and the dimensions of the recurrent and non-recurrent
projections were set to 256. The natural stochastic gradient descent (NSGD) algo-
rithm [46] was employed to train the model. The input feature was 40-dimensional
Fbanks, with a symmetric 2-frame window to splice neighboring frames. The output
layer consisted of 3,377 units, equal to the total number of Gaussians in the con-
ventional GMM system used to bootstrap the LSTM model. The language model is
the WSJ official full trigram model (‘tgpr’) comprising 19, 982 words. The baseline
word error rate (WER) is 10.30%.

5.1.8 SRE baseline

We built two SRE baseline systems: one is an i-vector system and the other is an ‘r-
vector’ system that is based on the recurrent LSTM model. For the i-vector system,
the acoustic feature was 60-dimensional MFCCs. A UBM with 2,048 Gaussian
components was used and the dimension of the i-vectors was set to 200. For the
r-vector system, the architecture is similar to the one used by the LSTM-based
ASR baseline, except that the number of cells is 512, and the dimensions of the
recurrent and non-recurrent projections have been set to 128. These values were
found empirically. The input of the r-vector system is the same as ASR system
(Fbanks), and the output corresponded to the 282 speakers in the training set.
Similar to the work in [3, 4], the speaker vector (‘r-vector’) was derived from the
output of the recurrent and nonrecurrent projections, by averaging the output of all
the frames. The dimension was 256. Voice activity detection (VAD) was employed
before feature extraction in the single-task baseline.

The baseline performance is reported in Table 1 in terms of equal error rate
(EER). It can be observed that the i-vector system generally outperforms the r-
vector system. Particularly, the discriminative models (LDA and PLDA) offer sig-
nificant improvement for the i-vector system compared to the r-vector system. This
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observation is consistent with the results reported in [4], and can be attributed to
the fact that the r-vector model has already been learned ‘discriminatively’ with
the LSTM structure. For this reason, in the following experiments we only consider

the simple cosine scoring for r-vector systems.

Table 1 WSJ baseline

EER%

System Cosine | LDA | PLDA
i-vector (200) 3.13 1.67 1.06
r-vector (256) 2.71 1.77 5.99

5.1.4 Multi-task collaborative training

Due to the flexibility of the multi-task recurrent LSTM structure, it is not possible
to experiment with all the configurations. We chose some typical settings and re-
port the results in Table 2, where the first row of the numbers report the baseline
system. Note that the last configuration, where the recurrent information is fed to
all the gates and the non-linear activation g(-), is equivalent to augmenting the aux-
iliary information to the input x. From our previous work [24], we observe that the
recurrent projection presents sufficient feedback information, so we report systems

with feedback from the recurrent projection only.

Table 2 WSJ full collaborative training

Feedback ASR SRE
Input WER% | EER%
i f o g

10.30 2.71

Vv 9.68 0.67
4 9.88 0.92

v 9.82 0.96

Vv 9.65 0.89

v vV 9.73 0.62
v v VvV 9.86 0.57

The results reported in Table 2 display trends consistent with the 16KHz WSJ
joint system reported in [24]. We first observe that the multi-task recurrent model
consistently improves performance on both ASR and SRE, no matter where the
recurrent information is extracted from and where it is applied. Interestingly, on
the SRE task, the joint system matches and even outperforms the i-vector/PLDA
system with careful selection of the configuration. To the best of our knowledge,
this is the first work where two collaborative tasks are learned jointly in a unified
framework and boost each other.

For the recurrent information ‘receiver’, i.e., the computing blocks that the re-
current information is applied to, it seems that for ASR the input gate and the
activation function are the most effective, while enhancing the output gate doesn’t
appear so effective. For SRE, all the configurations seem good. These observations
are just based on a relatively small database and it would be interesting to see if
these findings generalize to larger data sets. Note that the performance improvement
obtained with the collaborative training cannot be attributed to the enlargement
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of the network. For thoroughness, an experiment doubling the hidden units lead to
just a marginal performance gain on ASR, and the performance was even worse on
SRE, probably due to over-fitting problem.

5.1.5 Comparison with structure sharing

We compare collaborative learning with the conventional structure sharing approach
(Fig. 2(a)). To make the comparison, the simple single-layer LSTM structure of the
baseline ASR and SRE systems is enhanced by adding four full-connection (FC)
layers to learn deep features. Three systems are constructed: (1) ASR and SRE
single task systems; (2) ASR and SRE joint learning system with the four FC
layers shared; (3) ASR and SRE collaborative learning system with the four FC
layers shared, and the LSTM layer collaboratively trained. Table 3 presents the
results, where the best configurations from Table 2 are chosen for the collaborative
learning system. It can be seen that the feature sharing approach does not provide
clear performance gains over single task systems, while the collaborative learning
provides comparable performance improvement as in Table 2. This confirms our
conjecture that ASR and SRE are information-competitive tasks, and therefore
hardly benefit from structure sharing. Collaborative learning is a more appropriate

joint training approach for these tasks.

Table 3 Comparison with structure sharing

ASR SRE
System WER% | EER%
Single task 9.41 0.51
Structure sharing 9.40 0.64
Collaborative learning-g 9.06 0.52
Collaborative learning-ifog 9.29 0.47

5.1.6 Comparison with context-aware models

It has been demonstrated that involving phone posteriors can improve NN-based
SRE [4], and involving speaker vectors improves NN-based ASR [5, 6]. These
context-aware neural models are similar to the recurrent mulitask model, except
that the two tasks are not collaboratively trained and conducted. Comparing these
context-aware approaches with the collaborative learning approach will reveal the
sole contribution of the collaboration mechanism.

To make the conclusion more concrete, we built a context-aware ASR (CA-ASR)
system and a context-aware SRE (CA-SRE) system following the structure of the
collaborative learning system, but removing the recurrent connections. The baseline
ASR system is used to provide the context information for the CA-SRE system, and
the baseline SRE system is used for the CA-ASR system. Referring to the best ASR
and SRE configuration in Table 2, the speaker information is fed into the activation
function g, and the phone information is fed into ¢, f, 0, g.

The results are shown in Table 4. Firstly, it can be seen that the CA-ASR system
outperforms the baseline, while the CA-SRE performs worse than the baseline.
These results suggest that context-aware models may lead to performance gains,
but this is not necessary and the result depends on how the context information
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is involved. Secondly, it can be observed that the collaborative learning system
outperforms the context-aware systems on both ASR and SRE, confirming that the

collaboration mechanism indeed contributes significantly.

Table 4 Comparison with Non-collaborative system

ASR SRE
System WER% | EER%
ASR | Baseline 10.30 -
ASR | CA-ASR 9.97 -
ASR | iv-ASR 9.92 -
SRE | Baseline (r-vector) - 2.71
SRE | CA-SRE - 3.06
SRE | i-vector / PLDA - 1.06
SRE | DNN i-vector / PLDA - 1.00
Collaborative learning-g 9.65 0.89
Collaborative learning-ifog 9.86 0.57

Finally, we built another two context-aware systems: a DNN i-vector SRE sys-
tem [7, 8, 9, 10, 11], where phone posteriors (generated from the ASR baseline) are
used to accumulate the Baum-Welch statistics; and an i-vector ASR system (iv-
ASR) [5, 6] where segment i-vectors are augmented to the filter-bank input. The
length of the segment has been empirically set to 400 frames. These two systems
are not fully neural but indeed utilize auxiliary information, so can be compared
with the collaborative learning. The results are also shown in Table 4. It can be
observed that all these context-aware approaches provide reasonable performance
gains (the DNN i-vector system outperforms the i-vector system, and the iv-ASR
system outperforms the ASR baseline), but the collaborative learning performs the
best. This demonstrates that the collaboration mechanism is an appropriate way to

leverage the mutual information of collaborative tasks.

5.2 Partial collaborative training

In order to understand the implications of partial collaborative training where the
data are labelled for only one of the tasks we conduct two sets of experiments; 1)
We adapt the joint system in section 5.1 with partially labeled databases with just
one of the ASR or SRE targets. 2) The two databases are then combined for a

‘complete’ partial collaborative training.

5.2.1 Data

e SWB: This database was mainly used to improve the ASR component of the
joint system. It involves 313 hours of speech signals with word level transcrip-
tions.

e Fisher: This database was mainly used to improve the SRE component of
the joint system. It consists of 6,047 utterances from 2,000 speakers (1,000
females and 1,000 males).

e Eval2000: This database was used to evaluate the performance of both AS-
R and SRE. It consists of 80 speakers and 4,458 utterances. For SRE, the
evaluation consists of 133,383 target trials and 9,801,270 non-target trials.
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5.2.2 ASR-oriented partial collaborative training with SWB

In this experiment, the SWB database was used for partial collaborative training
with focus on ASR component. Only the phonetic labels of the SWB corpus were
considered in this experiment.

Three single-task systems were built as baselines: The first one is the 8kHz WSJ
ASR baseline as presented earlier (WSJ); the second is an ASR baseline trained
on SWB using the same recipe as the WSJ baseline (SWB); the third one is WSJ
baseline adapted with the SWB corpus (WSJ+SWB), where the network of the
WSJ baseline, except the last hidden layer, is reused, and the last hidden layer
(with the speakers in SWB as the new targets) is re-initialized randomly.

For evaluation, the transcriptions of the SWB and Fisher databases were used to
train a 3-gram LM, and Eval2000 was used as the test set. The WER results of these
baseline systems are shown in Table 5. We observe similar results when comparing
the SWB system and the WSJ+SWB system. The WSJ system is worse, which can
be attributed to mismatch in the channel conditions of WSJ and Eval2000.

Table 5 ASR single-task baselines for partial collaborative training

WER%
WSJ 58.6
SWB 24.0
WSJ+SWB 23.9

For partial collaborative training, we used SWB to conduct the ASR-oriented
partial training based on the joint system trained with WSJ. For simplicity, only the
input gate and the nonlinear function were used to receive the recurrent information.
The results are shown in Table 6. It can be seen that the partial collaborative
training adapts the joint system and improves the ASR performance significantly
compared to the WSJ-initialized joint system, and it also outperforms all the three
single-task ASR baselines.

The SRE results of the adapted system are also shown in Table 6. It is inter-
esting to see that, although the training data do not involve any speaker labels,
the SRE performance is improved. We conjecture that this is because the more
accurate recurrent information offered by the improved ASR component. This is a
nice property and supports well our argument that the recurrent model is suitable
for modeling collaborative tasks, and improvement on one task may benefit other
tasks.

Table 6 ASR-oriented partial collaborative training with SWB

Feedback WSJ SWB ASR SRE
Input Initialized | Trained | WER% | EER%
i f o g
Vv V4 58.9 21.32
v v 58.7 | 21.56
Vv VA Vv 22.9 18.66
V4 V4 Vv 22.9 18.10

5.2.3 SRE-oriented partial collaborative training with Fisher
In this experiment, the Fisher database was used to conduct the partial collaborative
training, where only the speaker labels were used to adapt the joint system. Similar
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to the ASR-oriented partial training experiment, three single-task r-vector SRE
baselines were built: the first one is the WSJ r-vector baseline (WSJ), and the
second was trained from scratch using the Fisher database (Fisher), following the
same recipe used by the WSJ baseline, and the third one is the WSJ baseline
adapted with the Fisher database (WSJ+Fisher). The test set is Eval2000. The
EER results of the baseline systems are shown in Table 7. We see that the Fisher
baseline performs the best, and the WSJ initial system does not help (actually
it leads to worse performance). Again, this can be attributed to the mismatch in

channel conditions.

Table 7 SRE single-task baselines for partial collaborative training

EER%
i-vector / PLDA | r-vector / Cosine
WSJ 20.49 24.68
Fisher 16.97 15.95
WS J-+Fisher 15.77 16.82

The partial collaborative training also starts from the WSJ joint system, which
is followed by the SRE-oriented partial collaborative training using the Fisher
database. The results are shown in Table 8. It can be observed that the initial
WSJ joint system performs worse than the single-task WSJ baseline on the SRE
task. With the SRE-oriented partial collaborative training, the SRE performance is
significantly improved, even better than those obtained with the single-task base-
lines. Unfortunately, the SRE-oriented partial training does not seem to help ASR; it
in fact deteriorates the ASR component significantly. We conjecture that the worse
performance is due to SRE-oriented ‘overfitting’. Specifically, the model parameters
may have been adapted over-aggressively to improve SRE, resulting in undesirable
parameter changes in the ASR component, resulting in very poor performance.!!
Interestingly, the bad ASR still leads to a strong SRE performance, which means
that inaccurate ASR information can still boost the SRE performance, otherwise
the joint system can not beat the single-task baselines.

We get interesting insights when the results are compared to those in ASR-oriented
training presented in Table 6. In the ASR-oriented training, both ASR and SRE
components are improved, while in the SRE-oriented training, only the SRE com-
ponent is improved. This suggests that the two tasks not only collaborative but also
competitive in the collaborative learning. On one hand, they boost each other by
sharing information, and on the other hand, they tried to optimize their individual
objectives. A subtle trade-off needs to be considered to balance the effect of the two
aspects, which becomes more clear in the complete partial collaborative training
presented in the next experiment.

5.2.4 Partial collaborative training with both SWB and Fisher
In the final experiment, we combine the SWB and Fisher databases (with partial

labels) for complete partial collaborative training. The speaker-labeled data and

M Note that ASR components are also updated even though the training data con-
tain only speaker labels, due to gradient propagation through the recurrent connec-

tions.
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Table 8 SRE-oriented partial collaborative training with Fisher

Feedback WSJ Fisher ASR SRE
Input Initialized | Trained | WER% | EER%
i f o g
v v 58.9 | 21.32
v v 58.7 | 2156
Vv V4 v 96.2 10.90
V4 V4 Vv 96.1 11.63

phone-labeled data are mixed together and are input sequentially in mini-batches.
Similar to the single-task-oriented partial collaborative training experiments, we can
use the joint system trained with WSJ as the initial model and use the two databases
to adapt the system. However, since phone targets and speaker targets are both
available (although not with a single sample), we can train the joint system from
scratch. Our experiments show that the two approaches lead to similar performance,
so we just report the results with the system trained from scratch.

As mentioned in the previous experiment, ASR and SRE are both collaborative
and competitive, so their relative contribution to the collaborative training should
be balanced. In our experiments, the Fisher database is about 3 times as large as the
SWB database. This means that the partial collaborative training might be biased
towards the SRE training. To investigate the impact of the bias, we conducted four
sets of experiments, where the amount of the SRE data extracted from Fisher varied
from 0.5 to 3 times of the SWB data. The data selection was utterance-based, and
the number of target speakers was constant.

The baseline systems are the single-task ASR and SRE systems trained with SWB
and Fisher respectively, as shown in Table 5 and Table 7, respectively. Table 9 shows
the results with the complete partial collaborative training. For a clear comparison,
the baseline results are also presented. It can be observed that the trend of the
performance is like a combination of the results in Table 6 and Table 8, taking into
account the relative data volume for the two tasks. Specifically, more ASR-oriented
training generally improves both ASR and SRE, and more SRE-oriented training
improves SRE more significantly, but hurts ASR. Importantly, an appropriate data
ratio (e.g., 1:0.5) leads to good performance for both tasks: it obtains the best ASR
result, and a very competitive SRE result. Focusing on each single task, the com-
plete partial collaborative training obtains the best performance on each of them
(22.6 on ASR and 10.54 on SRE). Interestingly, the performance on SRE does not
increase monotonically with more Fisher data. This can be attributed to the col-
laborative and competitive mechanism: too much speaker data leads to better SRE
performance but hurts ASR, and the worse ASR performance may in turn impact
SRE. In other words, a good ASR benefits SRE in the complete partial training.
This is very different from the SRE-oriented partial training where SRE is the only
goal of the training so that it can be improved even if the ASR performance is bad.
We therefore conclude that the SRE performance can be improved in two ways:
by complete partial training (as in Table 9) to seek for better auxiliary informa-
tion, or by SRE-oriented partial training (as in Table 8) to seek for SRE-oriented
optimization. These two approaches have different rationalities and their optimal
configurations are clearly distinct, and which model is optimal is undetermined.
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Table 9 Complete partial collaborative training with both SWB and Fisher

Feedback SWB & Fisher ASR SRE
Input Ratio WER% EER%

) f o g

- - 24.0 (SWB) | 15.95 (Fisher)

Vv 1:05 23.2 11.44
Vv 1:05 22.6 10.91
Vv 1:1 24.2 11.09
V4 1:1 23.2 10.85
v 1:2 26.0 10.54
v 1:2 245 11.07
v 1:3 28.8 11.13
V4 1:3 26.5 12.05

5.3 Discussion

The experiments presented in this section clearly demonstrate the capacity of collab-
orative learning with the multi-task recurrent model. However, to make the model
most effective, there are several important issues that need to be addressed. First of
all, as the information propagation paths are rather flexible, and the design of such
paths largely depends on the structure of each individual component, it is hard to
predict which configuration is optimal. In our experiments, the input gate and the
nonlinear activation function seem the best to receive the recurrent information,
but for other tasks (e.g., language recognition and speaker recognition) and other
structures (e.g., vanilla RNN), the propagation paths need to be carefully chosen
and the optimal design can be only determined by experiments. This can be a time
consuming task. A better approach involving either parameter shrinkage or prior
knowledge from cognitive study is desirable.

Another issue that needs to be addressed is the structure and configuration for
individual components in joint systems. Due to the recurrent structure, optimal
models/configurations may be different from the ones used in single-task systems.
For example, in our experiments voice activity detection (VAD) works well in the
single-task SRE systems, but in the joint system, VAD leads to worse performance.
This is possibly attributed to the signal discontinuity caused by VAD, which results
in worse ASR and hence worse SRE.

Finally, different tasks may behave very differently in collaborative training. For
instance, in our experiments SRE learning seems more aggressive than ASR learn-
ing: a relatively small amount of speaker-labeled data may lead to a clearly SRE-
biased joint model. This ‘asymmetry’ among tasks is closely related to the collabo-
ration and competition mechanism, and can be attributed to a multitude of factors
for the two tasks, e.g., the cost functions, the separability among targets, and the
strength of the gradient back propagated through the recurrent connections. In our
experiments, control of the relative contribution of each task in the collaborative
training was simply based on empirical evidence, but more theoretical ways would
be desirable.
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6 Conclusions

We have proposed a novel collaborative learning approach based on multi-task re-
current neural model, and applied this approach for joint learning of speech and
speaker recognition tasks. A thorough empirical investigation was conducted and
the results demonstrated that the presented approach can learn speech and speaker
models in a joint way and can improve the performance on both tasks. In particular,
we have demonstrated the feasibility of collaborative training with partially-labeled
data, which emphasizes the practical value of this approach. Future work involves
further investigation on the collaborative structure and the task asymmetry. Ap-

plying the method to other collaborative tasks will also be explored.
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