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Abstract

Automatic speech and speaker recognition are traditionally treated as two
independent tasks and are studied separately. The human brain in contrast
deciphers the linguistic content and the speaker traits from the speech in a
collaborative manner. This key observation motivates the work presented in this
article. A collaborative joint training approach based on multi-task recurrent
neural network models is proposed, where the output of one task is
back-propagated to the other tasks. This is a general framework for learning
collaborative tasks, and fits well with the goal of joint learning of automatic
speech and speaker recognition. Through a comprehensive study, it is shown that
the multi-task recurrent neural net models deliver improved performance on both
automatic speech and speaker recognition tasks as compared to single-task
systems. The strength of such multi-task collaborative learning is analyzed and
the impact of various training configurations is investigated.

Keywords: Speech Recognition; Speaker Recognition; Recurrent Neural
Networks; Multi-task Learning; Joint training

1 Introduction

Automatic speech recognition (ASR) and speaker recognition (SRE) are two im-

portant tasks in speech processing. Traditionally, these two tasks are treated inde-

pendently and are studied separately. This leads to task-specific learning methods

and models. However, this independent treatment is not the way that we humans

process speech signals: we always simultaneously decipher speech content and other

meta information including languages, speaker characteristics, emotions etc. This

‘multi-task processing’ relies on two premises: (1) all these tasks share the same sig-

nal processing pipeline in our aural system, and (2) they are mutual beneficial, i.e.,

the success on one task improves the performance on others. This observation has

motivated us to consider the possibility to deal with multiple tasks with a unified

model. In this paper, we focus on speech and speaker recognition, and demonstrate

that they can be addressed by a single neural-net model based on deep learning.
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1.1 Speech and speaker recognition: close correlation

The close correlation between ASR and SRE has been recognized for some time.

Firstly, many common techniques have been designed and employed for the two

tasks, from the use of MFCC (Mel-frequency cepstral coefficients) features to the

HMM/GMM (hidden Markov model/Gaussian mixture model) modeling frame-

work. Secondly, research in both areas has benefited by inter-exchange of ideas.

For example, the success of deep neural networks (DNN) in ASR [1, 2] has mo-

tivated the usage of neural models in SRE [3, 4]. Thirdly, it has been observed

that employing knowledge derived from one task for solving the other task is often

beneficial. For example, speaker identities (e.g., i-vectors) derived from SRE have

been found to improve the ASR accuracy [5, 6], and phone posteriors derived by

ASR have been successfully applied to improve SRE performance [7, 8, 9, 10, 11].

BenZeghiba et al. [12] proposed a joint decoding algorithm for ASR and SRE, by

searching for phone and speaker identities that maximize their joint probability. All

the above studies try to exploit the correlation between ASR and SRE for mutual

benefit; however, none of them formulates the idea as a unified model that learns

and addresses the two tasks jointly.

The development of deep learning methods in speech processing has opened new

research avenues. Since 2011, DNN and its recurrent variant, recurrent neural net-

works (RNN) have become the new state-of-the-art for ASR [13, 14]. Recently, the

same model has also achieved outstanding results in SRE, at least in text-dependent

tasks [15]. The deep RNN structure has two main influences: first, the structural

depth (multiple layers) produces high-level features that are more task-oriented; sec-

ond, the temporal depth (recurrent connections) allows learning complex temporal

patterns. Both the modern ASR and SRE systems leverage this to their advantage

and achieve their respective state-of-the-art performances. A natural question that

arises is: Given that both the two tasks use deep RNN models, would it be possible

to merge the two RNN models into a single one that can learn ASR and SRE jointly

and infer the two tasks simultaneously, as we human do all the time?

1.2 Difficulty with information competition

The ‘multi-task learning’ [16] makes the joint training and inference for correlated

tasks possible. The basic idea of this learning approach is that if two tasks are

correlated, then part of their model structures can be shared. This structure sharing

allows the two tasks to share the data statistics, leading to more robust models. A

typical multi-task learning strategy in the deep learning framework is to share the

low-level layers of neural nets, while keeping the higher-level layers task-dependent.

This is essentially a feature sharing strategy [17].

This multi-task learning approach based on structure sharing has been widely used

in multilingual speech recognition, where the ASR tasks on different languages are

treated as correlated, and the feature extraction component can be shared, due to

the commonality of human languages [18, 19, 20]. This approach has been found

to be especially useful for low-resource languages for which only limited training

data are available [21, 22]. As another example, Chen and colleagues [23] found

that phone recognition and grapheme recognition can be treated as two correlated

tasks, and a DNN model trained with the two tasks as objectives outperforms the
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ones trained only with phone targets. Other multi-task learning research work has

been reviewed in [17].

While this structure sharing approach, in particular feature sharing, is simple

and effective, it is not readily applicable to joint training ASR and SRE. This is

because the effective features required for the two tasks are fundamentally differen-

t: ASR requires features involving linguistic content as much as possible, whereas

SRE requires features with rich speaker information. These two requirements are

indeed mutually exclusive: to represent linguistic content, it is desirable to suppress

the speaker-related information and vice-versa for the speaker content. Such tasks

using different parts of information in the input data are regarded as ‘information-

competitive’ tasks. For these tasks, the conventional multi-task learning methods

based on structure/feature sharing are clearly not ideal. Unfortunately, many corre-

lated tasks fall under this category, e.g., language identification and speaker recog-

nition, emotion recognition and speech recognition. Multi-task joint learning for

such information-competitive tasks has not been fully investigated.

1.3 Our proposal

A key observation for information-competitive tasks is that they are ‘collaborative’,

which means that their performance can be boosted by leveraging information from

each other. This collaborative relation among tasks can be leveraged to design a

new multi-task joint learning framework. This framework is not based on struc-

ture sharing; instead it relies on inter-task information propagation, with which

the performance of each task can be boosted by the auxiliary information derived

from other tasks. We call this learning framework for collaborative tasks ‘collabo-

rative joint learning’, or simply ‘collaborative learning’. This learning framework is

generic and as such can be applied to any collaborative tasks as long as they are

complementary, for instance ASR and SRE.

This paper presents such a collaborative learning structure based on deep neural

net models. The key idea is to merge task-specific neural models with inter-task

recurrent connections into a unified model. This model fits well the ASR/SRE joint

training. In this scenario, the speech content and speaker identity are produced at

each frame step by the ASR and SRE components respectively. By exchanging these

bits of information, performances on both ASR and SRE are sought to be improved.

This leads to a joint and simultaneous learning for the two tasks, simulating the

process of language acquisition in human beings (c.f. Section 2).

A preliminary version of this paper has been published in arXiv [24]. This paper

extends [24] with several contributions including: (1) presentation of more evidence

from cognitive studies on human auditory systems to support the collaborative join-

t learning idea; (2) detailed analysis of the modeling strength of the collaborative

learning and the multi-task recurrent neural net model; (3) extension of the ex-

perimental work from fully-labeled training to partially-labeled training, where the

training data are labeled with targets of one partial task; (4) presentation of more

comprehensive experimental results to show how ASR and SRE impact each other

in the collaborative learning framework.

Note that Li et al. [25] proposed a similar model structure with primary focus

on ASR with SRE being treated as an auxiliary task. We demonstrate that the



Tang et al. Page 4 of 22

recurrent structure is more generic than providing auxiliary information; it is a

way of collaborative learning that can jointly improve the performance of all the

constituent collaborative tasks.

The rest of the paper is organized as follows: Section 2 presents some cognitive

evidence for speech and speaker collaborative learning, and Section 3 presents the

learning framework based on multi-task recurrent models and analyzes the strength

of this learning approach. Section 4 describes details of the ASR/SRE multi-task

recurrent model, and Section 5 reports the experimental results. The paper is con-

cluded in Section 6, with some ideas for future work.

2 Cognitive evidence
The strong connection between speech and speaker perception has been found in

numerous cognitive studies from infant language development to audio perception

in adults.

Research on information disentanglement in language development of infants show

that in early developmental stages, infants can not distinguish linguistic content

from other factors e.g., gender and emotion. They gradually learn which information

is relevant for each task, thus enabling them to distinguish latent factors such as

semantic meaning and speaker identity. Walker et al. [26] reported that infants

are sensitive to gender information in their early state of language development.

Houston and colleagues [27, 28] found that infants at 7.5 months treat the same

word from male speakers and female speakers as different words, while infants at

10.5 months could generalize different instances of the same word across utterances

of the opposite sex.

The strong influence of speech and speaker perception on each other is highlighted

in a study by Johnson [29], where it was found that 7-month-old infants could detect

speaker change when the pronounced sentences were familiar to them. If the words

were in another language or the sentences were read in reverse, they could not detect

the speaker change.

According to the PRIMIR framework presented by Werker and colleagues [30],

understanding performance changes of an infant in any one task requires considera-

tion of performance in other tasks, though the inter-task mutual impact is different

at different times in development.

All the above research, and in particular the PRIMIR theory, provides strong

support for our study on multi-task collaborative learning. The network structure

shown in Fig. 1 (elaborated in the next section) is like the auditory system of an

infant: the shared acoustic pre-processing component corresponds to the ‘bias filter’

in PRIMIR and plays the role of removing irrelevant information like background

noise; the single-task network is the ‘development structure’ that can pick up task-

dependent information for specific tasks; the multi-task recurrence is the ‘inter-

task co-development structure’ that leverages correlations among different language

tasks.

Multi-task information disentanglement is not only an important process for in-

fants when developing their language, but also an important tool that adults use

everyday to process various perceptual tasks. For example, Creelman et al. [31]

found that word recognition accuracy decreased in the presence of noise when the
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identity of the talker was unpredictable from trial to trial. The same phenomenon

was also found by Summerfield [32], Verbrugge et al. [33], Mullennix et al. [34]

and Nusbaum et al. [35]. All these studies conclude that speaker variation impacts

word recognition in a significant way. Johnson [36] summarized these studies and

described a ‘talker normalization’ framework, which argues that a listener needs

to locate a talker in a ‘talker coordinate’ to assist the recognition of the following

word. The coordinate can be established very quickly at the very beginning of the

listening task, by estimating the talker’s vocal track length or retrieving words in

his/her memory that are similar to the talker’s words.

Another interesting study is the work conducted by Eklund and colleagues [37].

They found evidence of a connection between talker perception and vowel percep-

tion, this time in a study of whispered speech. When listeners misidentified the sex

of the talker their vowel identification error rate was 25%, but when they correctly

identified the sex of the speaker the vowel error rate was only 5%. This suggests

that talker perception and vowel perception are interconnected with each other.

The argument of the connection between word recognition and speaker identifica-

tion was clarified by Nygaard [38]. It was clearly demonstrated that linguistic and

non-linguistic properties are integrally related components of the same acoustic

speech signal, and consequently, the speech perception process.

The above studies suggest that the inter-link between speech and speaker recogni-

tion tasks not only plays a role in infant language development, but also in adult’s

daily perceptual tasks. This provides further support for our research, that multiple

correlated tasks should not only be considered in model training, but also be consid-

ered during inference. The multi-task recurrent architecture that will be elaborated

in the next section provides a framework to train and infer various tasks jointly in

a principled way.

3 Collaborative joint learning
The cognitive evidence has motivated us to consider a joint training architecture

where collaborative tasks can exchange information with each other so that perfor-

mance of the individual tasks can be simultaneously improved. This section first

presents a joint learning framework for collaborative tasks based on an inter-task

recurrent neural network structure, and then analyzes the strength of the proposed

model. Finally we compare the recurrent model and the feature sharing approach,

highlighting their respective advantages and application scenarios.

3.1 Multi-task recurrent model

An ideal model for collaborative learning should at least possess the following two

properties:

• it should be a unified model where the components for individual tasks are

homogeneous in model structure and learning scheme, so that they can be

trained jointly and simultaneously as a single model;

• the components for individual tasks should be able to collaborate with each

other, i.e., they should help each other in both training and inference.

A multitude of model structures satisfy these requirements, e.g., joint factor anal-

ysis (JFA) has been widely used to model speaker traits and channel effect simul-

taneously [39]. In this paper, we are most interested in deep neural models due to
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Figure 1 The multi-task recurrent neural model for collaborative learning.

their superior performance in speech and speaker recognition. Motivated by the cog-

nitive evidence, a possible collaborative learning structure with deep neural models

is illustrated in Fig. 1, where each individual task is modeled by a deep neural mod-

el, and some inter-task connections are introduced to propagate information across

tasks.

This structure perfectly meets the requirements for collaborative learning: it is a

unified model purely based on neural networks and is therefore homogeneous, and

the individual components help each other by the recurrent information exchange.

Note that the inter-task connections propagate information from output back to

input, so the entire structure is an RNN model – the only difference from the vanilla

RNN model is that the recurrent connections are at the task level. We denote this

model as a multi-task recurrent model, and each task-specific neural structure as a

‘component’. The information propagated back is called as ‘feedback information’,

and is referred as ‘auxiliary information’ when fed into a component.

3.2 Strength of multi-task recurrent model

The strength of the multi-task recurrent model can be understood in different ways.

We focus on two perspectives: for task specific component the model offers context-

aware learning; when viewed in its entirety, the model provides a mechanism for

task-specific information disentanglement in the supervised learning paradigm

3.2.1 Context-aware learning

Context-aware learning involves extra information when training a neural model.

For example, [5] introduced a speaker vector (i-vector) as additional input to im-

prove DNN-based ASR, and [40] showed that incorporating the rate of speaking

improved their ASR system. Intuitively, the extra information can provide more

cues to discriminate the targets; more formally, involving the extra information

leads to a context-aware conditional model that is easier to train.

Consider a particular component in the recurrent structure, e.g., the ASR com-

ponent. Let x and t denote the primary input features (e.g., Fbank) and the targets

(e.g., phones) respectively, and c be the extra input obtained from other components
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(e.g., speaker vector). With the information c, the model estimates the probability

P (t|x, c). If we regard the extra input c as a context indicator, the model is context-

aware. Note that the context-aware model is a conditional model with the context

c as the condition. In contrast, the single-task model, which can be formulated as

P (t|x), is essentially a marginal model
∑

c P (t|x, c)P (c|x) where c is latent.

The shift from a marginal model to a conditional model offers at least two advan-

tages: firstly, the context probability P (c|x) is learned by a separate model, which is

not only more flexible but also more effective, as more powerful models can be used.

Secondly, the conditional model is often easier to train than the marginal model,

since the latter tends to involve a more uneven cost function (with more modes),

due to the effect of the latent variable c.

3.2.2 Supervised information disentanglement

Another strength of the multi-task recurrent model is its capability of disentangling

task-sensitive information. Information entanglement is a major challenge in most

machine learning tasks. Taking ASR and SRE as an example, the causal factors

for the two tasks (linguistic contents and speaker traits) are mixed together and

are buried in raw signals. Extracting the most effective information (factors) for

each task is one of the most challenging subjects in both ASR and SRE research.

For a long time, researchers focused on designing elegant filters and transforms to

obtain task-sensitive features and suppress irrelevant ones. Recently, deep neural

models have been widely used to learn task-sensitive features through a layer-by-

layer structure [41].

A successful approach to the layer-wise feature learning is through unsupervised

learning methods such as stacked RBM [42] or stacked autoencoder [43]. One of

the advantages of the unsupervised learning approach is that it can disentangle

prominent factors within the signal [41]. This has been used to understand the

success of the unsupervised pre-training methods, where the pre-trained models are

used to disentangle information, by which the task-related features can be easily

extracted by simple fine tuning [41, 44]. For supervised learning of DNN models,

this information disentanglement is however not so obvious. Instead of disentangling

information and then selecting the relevant features, supervised learning is more like

a layer-by-layer information filtering: it chooses a particular task, and then tries to

select features that are most relevant to the task and suppress irrelevant ones. A

shortcoming of this process is that there is only one task to supervise the information

filtering, which is sometimes not very effective.

With the collaborative learning using multi-task recurrent model, tasks collabo-

rate together to discover their own desired feature. Specifically, each task informs

others which information it prefers and which information it does not, which can

help other tasks in feature extraction. For example, if component A informs com-

ponent B that it wants some piece of information, and component B informs com-

ponent A that it does not want the information, there is a strong evidence that the

information is closely related to task A. This collaborative information extraction

process is essentially an information disentanglement procedure, and is within the

supervised learning paradigm. We conjecture that this information disentanglement

leads to more precise feature extraction for each individual task compared to the

single-task systems, as the latter is supervised by and oriented to a single task.



Tang et al. Page 8 of 22

Frontend

Sharing
Neural model

Target 1 Target 2

(a) Structure sharing

Task 1
Neural model

Task 2
Neural model

Frontend 1 Frontend 2

Target 1 Target 2

Common
Frontend

(b) Multi-task recurrent model

Frontend

Sharing
Neural model

Task 1
Neural model

Task 2
Neural model

Target 1 Target 2

(c) Combination I

Frontend 1

Sharing
Neural model

Task 3
Neural model

Task 1
Neural model

Target 1

Frontend 2

Task 2
Neural model

Target 2

Common
Frontend

Target 3

(d) Combination II

Figure 2 Various multi-task joint learning models.

3.3 Comparison of two joint learning models

The structure sharing approach and the multi-task recurrent model are both effec-

tive methods for multi-task joint learning, though with very different rationalities.

For a clear comparison, the two approaches are illustrated in Fig 2, plot (a) and (b)

respectively. Several important differences are listed as follows.

• The rationality of structure sharing is to accumulate statistical strength from

individual tasks so that each model can be trained more robustly. The ratio-

nality of the multi-task recurrent model, however, lies in borrowing informa-

tion from each other so that more accurate models for individual tasks can be

learned. Analogous to ‘structure sharing’, this can be regarded as ‘information

sharing’.

• The structure sharing approach tends to be more effective for tasks with simi-

lar targets. For example, in multilingual ASR, the targets of all the individual

components are phone discrimination. This target similarity enables sharing

in feature extraction and in model sub-structures. In contrast, the multi-task

recurrent model is more effective for tasks with heterogeneous targets, for

which information from each of them is collaborative.

• The structure sharing approach focuses only on model training – once the

models have been trained, the task specific models are often used indepen-

dently. The multi-task recurrent model, in contrast is a unified model, so the

collaborative tasks must be learnt as well as inferred simultaneously.
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• Due to the accumulation of sufficient statistics across tasks, the structure

sharing approach is particularly useful in scenarios with data sparsity, making

it a good tool in transfer learning (e.g., in minor language ASR). For the

multi-task recurrent model, however, all individual components should be well

trained with sufficient data, otherwise the joint model may perform poorly.

• Due to the interaction among individual components, multi-task recurrent

models are generally more difficult to train as compared to models with shared

structure.

The differences listed above are not absolute. For instance, structure sharing can

be also used for tasks with heterogeneous targets, in which case only one task is

of primary concern and others are auxiliary. Moreover, the two approaches can be

combined to construct more complex multi-task learning models, e.g., the models

shown in Fig. 2 (c) and (d). This paper focuses on the typical multi-task recurrent

model shown in Fig. 2 (b), and leaves more complex variants for future exploration.

4 Multi-task recurrent model for ASR and SRE

Applying the multi-task recurrent model for ASR and SRE is straightforward. We

choose the structure illustrated in Fig. 1, where the two neural models in the dia-

gram correspond to the ASR and SRE components respectively. We first describe

the single-task baseline model used in our study, and then present the multi-task

recurrent model.

4.1 Basic single-task model

The state-of-the-art architecture for ASR is based on RNN, in particular the long

short-term memory (LSTM) model [13]. This model has also delivered good per-

formance on SRE task [15]. We therefore choose LSTM to build the single-task

baseline systems for both ASR and SRE. The modified LSTM structure proposed

in [14] is used. The network structure is shown in Fig. 3.
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Figure 3 The LSTM model for ASR and SRE single-task baselines. The picture is reproduced
from [14].
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The associated computations are as follows:

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf )

ct = ft � ct−1 + it � g(Wcxxt +Wcrrt−1 + bc)

ot = σ(Woxxt +Worrt−1 +Wocct + bo)

mt = ot � h(ct)

rt = Wrmmt

pt = Wpmmt

yt = Wyrrt +Wyppt + by

In the above equations, the W terms denote weight matrices and those associated

with the cells were constrained to be diagonal in our implementation. The b terms

denote bias vectors. xt and yt are the input and output symbols respectively; it, ft,

ot represent respectively the input, forget and output gates; ct is the cell and mt is

the cell output. rt and pt are two output components derived from mt, where rt is

recurrent and fed to the next time step, while pt is not recurrent and contributes to

the present output only. σ(·) is the logistic sigmoid function, and g(·) and h(·) are

non-linear activation functions, often chosen to be hyperbolic. � denotes element-

wise multiplication.

4.2 Multi-task recurrent model

We use the recurrent LSTM model used in the single-task systems to build the ASR

component and the SRE component, and introduce inter-task recurrent connections

to construct the multi-task recurrent model. Note that there is a bunch of design

choices need to consider. The first one is: where should the recurrent information

be extracted from. It could be extracted from the cell ct or cell output mt, or from

the penultimate layer rt or pt, or from the output yt. Another question is: which

computation block will receive the recurrent information? The information could

simply be augmented to the input variable xt, but could also be passed on to the

input gate it, the output gate ot, the forget gate ft or the non-linear function g(·).
Finally, the computing block that the information is extracted from is not neces-

sarily the same for different tasks, nor is the block that receives the information.

However in this study, we consider only the symmetric structure for simplicity.

With all the above alternative options, the multi-task recurrent model is rather

flexible. The cognition evidence doesn’t suggest any particular structure, although

some general principles exist (e.g., the information exchange probably takes place

during some intermediate steps rather than from the very beginning). For this

reason, we need to experiment with a few alternate configurations of the network

structure.

An example structure is shown in Fig. 4, where the recurrent information is ex-

tracted from both the recurrent projection rt and the non-recurrent projection pt,

and the information is used as additional input to the non-linear function g(·). We

use the superscript a and s to denote the ASR and SRE tasks respectively. The
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Figure 4 Multi-task recurrent model for ASR and SRE, an example.

computation for ASR can be expressed as follows (SRE recurrent information is

underlined):
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and the computation for SRE is as follows (ASR recurrent information is under-

lined):

ist = σ(W s
ixxt +W s

irr
s
t−1 +W s

icc
s
t−1 + bsi )

fst = σ(W s
fxxt +W s

frr
s
t−1 +W s
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s
t−1 + bsf )

gst = g(W s
cxx

s
t +W s

crr
s
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cr r
a
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cp p
a
t−1)
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s
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s
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s
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s
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4.3 Full and partial collaborative training

The multi-task recurrent model described above can be trained with complete or

incomplete data. Complete data are labelled by both speech and speaker targets for

each training sample; incomplete data, in contrast, are labelled by only one partic-

ular target, either speech or speaker. We call the training with complete data ‘full

collaborative training’, and the training with incomplete data ‘partial collaborative

training’. In the previous study [24], we have shown that full collaborative train-

ing can improve performance on both ASR and SRE, however partial collaborative

training has not been fully investigated. Since most existing large-scale databas-

es are designed for a particular task and so are labelled incompletely, empirical

evidence for partial collaborative training is very important.

Intuitively, partial collaborative training is analogous to teaching a child different

knowledge types one at a time in a random and alternating manner, with the hope

that each knowledge type contributes to the better understanding of other types.

In practice, there are a number of issues that need to be addressed, e.g., how to

balance the gradient contribution from each task, how the tasks impact each other

through the recurrent connections, etc. We will discuss these issues in the following

section.

5 Experiments
In this section, we first present the experiments with full collaborative training, and

then report experiments with partial collaborative training, where the ASR and

SRE components were trained with the Switchboard (SWB) and Fisher database

respectively. All the experiments were conducted with the Kaldi toolkit [45].

5.1 Full collaborative training

In the first experiment, we study full collaborative training where the training data

are labeled with both speech content (phones) and speaker identifies. The costs

on both speaker and phone targets are added together, and the gradient on the

accumulated cost is computed and back-propagated to update the entire network.

WSJ database has been used in this experiment. As opposed to the preliminary
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results presented in our earlier work [24], the results presented here use the WSJ

corpus down-sampled to 8k Hz. This was done for uniformity in sampling rate across

all the databases used in this study, viz., WSJ, Switchboard, Fisher and Eval2000.

5.1.1 Data

• Training set: This set comprises all the data in train si284 consisting of 282

speakers and 37, 318 utterances, with about 50-155 utterances per speaker.

This set was used to train an ASR baseline based on LSTM, and two SRE

baselines based on LSTM and i-vectors respectively. The same data were also

used to train the proposed multi-task recurrent model.

• Test set: This set includes three datasets (devl92, eval92 and eval93). It con-

sists of 27 speakers and 1, 049 utterances in total. It was used to evaluate

the performance of both ASR and SRE. For SRE, the evaluation consists

of 21, 350 target trials and 528, 326 non-target trials, constructed from the

speakers in the test set.

5.1.2 ASR baseline

The ASR system was built largely following the Kaldi WSJ s5 nnet3 recipe, except

that we have used a single LSTM layer for simplicity. The number of cells in the hid-

den layer was set to 1, 024, and the dimensions of the recurrent and non-recurrent

projections were set to 256. The natural stochastic gradient descent (NSGD) algo-

rithm [46] was employed to train the model. The input feature was 40-dimensional

Fbanks, with a symmetric 2-frame window to splice neighboring frames. The output

layer consisted of 3, 377 units, equal to the total number of Gaussians in the con-

ventional GMM system used to bootstrap the LSTM model. The language model is

the WSJ official full trigram model (‘tgpr’) comprising 19, 982 words. The baseline

word error rate (WER) is 10.30%.

5.1.3 SRE baseline

We built two SRE baseline systems: one is an i-vector system and the other is an ‘r-

vector’ system that is based on the recurrent LSTM model. For the i-vector system,

the acoustic feature was 60-dimensional MFCCs. A UBM with 2, 048 Gaussian

components was used and the dimension of the i-vectors was set to 200. For the

r-vector system, the architecture is similar to the one used by the LSTM-based

ASR baseline, except that the number of cells is 512, and the dimensions of the

recurrent and non-recurrent projections have been set to 128. These values were

found empirically. The input of the r-vector system is the same as ASR system

(Fbanks), and the output corresponded to the 282 speakers in the training set.

Similar to the work in [3, 4], the speaker vector (‘r-vector’) was derived from the

output of the recurrent and nonrecurrent projections, by averaging the output of all

the frames. The dimension was 256. Voice activity detection (VAD) was employed

before feature extraction in the single-task baseline.

The baseline performance is reported in Table 1 in terms of equal error rate

(EER). It can be observed that the i-vector system generally outperforms the r-

vector system. Particularly, the discriminative models (LDA and PLDA) offer sig-

nificant improvement for the i-vector system compared to the r-vector system. This
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observation is consistent with the results reported in [4], and can be attributed to

the fact that the r-vector model has already been learned ‘discriminatively’ with

the LSTM structure. For this reason, in the following experiments we only consider

the simple cosine scoring for r-vector systems.

Table 1 WSJ baseline

EER%

System Cosine LDA PLDA

i-vector (200) 3.13 1.67 1.06

r-vector (256) 2.71 1.77 5.99

5.1.4 Multi-task collaborative training

Due to the flexibility of the multi-task recurrent LSTM structure, it is not possible

to experiment with all the configurations. We chose some typical settings and re-

port the results in Table 2, where the first row of the numbers report the baseline

system. Note that the last configuration, where the recurrent information is fed to

all the gates and the non-linear activation g(·), is equivalent to augmenting the aux-

iliary information to the input x. From our previous work [24], we observe that the

recurrent projection presents sufficient feedback information, so we report systems

with feedback from the recurrent projection only.

Table 2 WSJ full collaborative training

Feedback ASR SRE

Input WER% EER%

i f o g

10.30 2.71
√

9.68 0.67
√

9.88 0.92
√

9.82 0.96
√

9.65 0.89
√ √ √

9.73 0.62
√ √ √ √

9.86 0.57

The results reported in Table 2 display trends consistent with the 16KHz WSJ

joint system reported in [24]. We first observe that the multi-task recurrent model

consistently improves performance on both ASR and SRE, no matter where the

recurrent information is extracted from and where it is applied. Interestingly, on

the SRE task, the joint system matches and even outperforms the i-vector/PLDA

system with careful selection of the configuration. To the best of our knowledge,

this is the first work where two collaborative tasks are learned jointly in a unified

framework and boost each other.

For the recurrent information ‘receiver’, i.e., the computing blocks that the re-

current information is applied to, it seems that for ASR the input gate and the

activation function are the most effective, while enhancing the output gate doesn’t

appear so effective. For SRE, all the configurations seem good. These observations

are just based on a relatively small database and it would be interesting to see if

these findings generalize to larger data sets. Note that the performance improvement

obtained with the collaborative training cannot be attributed to the enlargement
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of the network. For thoroughness, an experiment doubling the hidden units lead to

just a marginal performance gain on ASR, and the performance was even worse on

SRE, probably due to over-fitting problem.

5.1.5 Comparison with structure sharing

We compare collaborative learning with the conventional structure sharing approach

(Fig. 2(a)). To make the comparison, the simple single-layer LSTM structure of the

baseline ASR and SRE systems is enhanced by adding four full-connection (FC)

layers to learn deep features. Three systems are constructed: (1) ASR and SRE

single task systems; (2) ASR and SRE joint learning system with the four FC

layers shared; (3) ASR and SRE collaborative learning system with the four FC

layers shared, and the LSTM layer collaboratively trained. Table 3 presents the

results, where the best configurations from Table 2 are chosen for the collaborative

learning system. It can be seen that the feature sharing approach does not provide

clear performance gains over single task systems, while the collaborative learning

provides comparable performance improvement as in Table 2. This confirms our

conjecture that ASR and SRE are information-competitive tasks, and therefore

hardly benefit from structure sharing. Collaborative learning is a more appropriate

joint training approach for these tasks.

Table 3 Comparison with structure sharing

ASR SRE

System WER% EER%

Single task 9.41 0.51

Structure sharing 9.40 0.64

Collaborative learning-g 9.06 0.52

Collaborative learning-ifog 9.29 0.47

5.1.6 Comparison with context-aware models

It has been demonstrated that involving phone posteriors can improve NN-based

SRE [4], and involving speaker vectors improves NN-based ASR [5, 6]. These

context-aware neural models are similar to the recurrent mulitask model, except

that the two tasks are not collaboratively trained and conducted. Comparing these

context-aware approaches with the collaborative learning approach will reveal the

sole contribution of the collaboration mechanism.

To make the conclusion more concrete, we built a context-aware ASR (CA-ASR)

system and a context-aware SRE (CA-SRE) system following the structure of the

collaborative learning system, but removing the recurrent connections. The baseline

ASR system is used to provide the context information for the CA-SRE system, and

the baseline SRE system is used for the CA-ASR system. Referring to the best ASR

and SRE configuration in Table 2, the speaker information is fed into the activation

function g, and the phone information is fed into i, f, o, g.

The results are shown in Table 4. Firstly, it can be seen that the CA-ASR system

outperforms the baseline, while the CA-SRE performs worse than the baseline.

These results suggest that context-aware models may lead to performance gains,

but this is not necessary and the result depends on how the context information
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is involved. Secondly, it can be observed that the collaborative learning system

outperforms the context-aware systems on both ASR and SRE, confirming that the

collaboration mechanism indeed contributes significantly.

Table 4 Comparison with Non-collaborative system

ASR SRE

System WER% EER%

ASR Baseline 10.30 -

ASR CA-ASR 9.97 -

ASR iv-ASR 9.92 -

SRE Baseline (r-vector) - 2.71

SRE CA-SRE - 3.06

SRE i-vector / PLDA - 1.06

SRE DNN i-vector / PLDA - 1.00

Collaborative learning-g 9.65 0.89

Collaborative learning-ifog 9.86 0.57

Finally, we built another two context-aware systems: a DNN i-vector SRE sys-

tem [7, 8, 9, 10, 11], where phone posteriors (generated from the ASR baseline) are

used to accumulate the Baum-Welch statistics; and an i-vector ASR system (iv-

ASR) [5, 6] where segment i-vectors are augmented to the filter-bank input. The

length of the segment has been empirically set to 400 frames. These two systems

are not fully neural but indeed utilize auxiliary information, so can be compared

with the collaborative learning. The results are also shown in Table 4. It can be

observed that all these context-aware approaches provide reasonable performance

gains (the DNN i-vector system outperforms the i-vector system, and the iv-ASR

system outperforms the ASR baseline), but the collaborative learning performs the

best. This demonstrates that the collaboration mechanism is an appropriate way to

leverage the mutual information of collaborative tasks.

5.2 Partial collaborative training

In order to understand the implications of partial collaborative training where the

data are labelled for only one of the tasks we conduct two sets of experiments; 1)

We adapt the joint system in section 5.1 with partially labeled databases with just

one of the ASR or SRE targets. 2) The two databases are then combined for a

‘complete’ partial collaborative training.

5.2.1 Data

• SWB: This database was mainly used to improve the ASR component of the

joint system. It involves 313 hours of speech signals with word level transcrip-

tions.

• Fisher: This database was mainly used to improve the SRE component of

the joint system. It consists of 6, 047 utterances from 2, 000 speakers (1, 000

females and 1, 000 males).

• Eval2000: This database was used to evaluate the performance of both AS-

R and SRE. It consists of 80 speakers and 4, 458 utterances. For SRE, the

evaluation consists of 133, 383 target trials and 9, 801, 270 non-target trials.
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5.2.2 ASR-oriented partial collaborative training with SWB

In this experiment, the SWB database was used for partial collaborative training

with focus on ASR component. Only the phonetic labels of the SWB corpus were

considered in this experiment.

Three single-task systems were built as baselines: The first one is the 8kHz WSJ

ASR baseline as presented earlier (WSJ); the second is an ASR baseline trained

on SWB using the same recipe as the WSJ baseline (SWB); the third one is WSJ

baseline adapted with the SWB corpus (WSJ+SWB), where the network of the

WSJ baseline, except the last hidden layer, is reused, and the last hidden layer

(with the speakers in SWB as the new targets) is re-initialized randomly.

For evaluation, the transcriptions of the SWB and Fisher databases were used to

train a 3-gram LM, and Eval2000 was used as the test set. The WER results of these

baseline systems are shown in Table 5. We observe similar results when comparing

the SWB system and the WSJ+SWB system. The WSJ system is worse, which can

be attributed to mismatch in the channel conditions of WSJ and Eval2000.

Table 5 ASR single-task baselines for partial collaborative training

WER%

WSJ 58.6

SWB 24.0

WSJ+SWB 23.9

For partial collaborative training, we used SWB to conduct the ASR-oriented

partial training based on the joint system trained with WSJ. For simplicity, only the

input gate and the nonlinear function were used to receive the recurrent information.

The results are shown in Table 6. It can be seen that the partial collaborative

training adapts the joint system and improves the ASR performance significantly

compared to the WSJ-initialized joint system, and it also outperforms all the three

single-task ASR baselines.

The SRE results of the adapted system are also shown in Table 6. It is inter-

esting to see that, although the training data do not involve any speaker labels,

the SRE performance is improved. We conjecture that this is because the more

accurate recurrent information offered by the improved ASR component. This is a

nice property and supports well our argument that the recurrent model is suitable

for modeling collaborative tasks, and improvement on one task may benefit other

tasks.

Table 6 ASR-oriented partial collaborative training with SWB

Feedback WSJ SWB ASR SRE

Input Initialized Trained WER% EER%

i f o g
√ √

58.9 21.32
√ √

58.7 21.56
√ √ √

22.9 18.66
√ √ √

22.9 18.10

5.2.3 SRE-oriented partial collaborative training with Fisher

In this experiment, the Fisher database was used to conduct the partial collaborative

training, where only the speaker labels were used to adapt the joint system. Similar
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to the ASR-oriented partial training experiment, three single-task r-vector SRE

baselines were built: the first one is the WSJ r-vector baseline (WSJ), and the

second was trained from scratch using the Fisher database (Fisher), following the

same recipe used by the WSJ baseline, and the third one is the WSJ baseline

adapted with the Fisher database (WSJ+Fisher). The test set is Eval2000. The

EER results of the baseline systems are shown in Table 7. We see that the Fisher

baseline performs the best, and the WSJ initial system does not help (actually

it leads to worse performance). Again, this can be attributed to the mismatch in

channel conditions.

Table 7 SRE single-task baselines for partial collaborative training

EER%

i-vector / PLDA r-vector / Cosine

WSJ 20.49 24.68

Fisher 16.97 15.95

WSJ+Fisher 15.77 16.82

The partial collaborative training also starts from the WSJ joint system, which

is followed by the SRE-oriented partial collaborative training using the Fisher

database. The results are shown in Table 8. It can be observed that the initial

WSJ joint system performs worse than the single-task WSJ baseline on the SRE

task. With the SRE-oriented partial collaborative training, the SRE performance is

significantly improved, even better than those obtained with the single-task base-

lines. Unfortunately, the SRE-oriented partial training does not seem to help ASR; it

in fact deteriorates the ASR component significantly. We conjecture that the worse

performance is due to SRE-oriented ‘overfitting’. Specifically, the model parameters

may have been adapted over-aggressively to improve SRE, resulting in undesirable

parameter changes in the ASR component, resulting in very poor performance.[1]

Interestingly, the bad ASR still leads to a strong SRE performance, which means

that inaccurate ASR information can still boost the SRE performance, otherwise

the joint system can not beat the single-task baselines.

We get interesting insights when the results are compared to those in ASR-oriented

training presented in Table 6. In the ASR-oriented training, both ASR and SRE

components are improved, while in the SRE-oriented training, only the SRE com-

ponent is improved. This suggests that the two tasks not only collaborative but also

competitive in the collaborative learning. On one hand, they boost each other by

sharing information, and on the other hand, they tried to optimize their individual

objectives. A subtle trade-off needs to be considered to balance the effect of the two

aspects, which becomes more clear in the complete partial collaborative training

presented in the next experiment.

5.2.4 Partial collaborative training with both SWB and Fisher

In the final experiment, we combine the SWB and Fisher databases (with partial

labels) for complete partial collaborative training. The speaker-labeled data and

[1]Note that ASR components are also updated even though the training data con-

tain only speaker labels, due to gradient propagation through the recurrent connec-

tions.
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Table 8 SRE-oriented partial collaborative training with Fisher

Feedback WSJ Fisher ASR SRE

Input Initialized Trained WER% EER%

i f o g
√ √

58.9 21.32
√ √

58.7 21.56
√ √ √

96.2 10.90
√ √ √

96.1 11.63

phone-labeled data are mixed together and are input sequentially in mini-batches.

Similar to the single-task-oriented partial collaborative training experiments, we can

use the joint system trained with WSJ as the initial model and use the two databases

to adapt the system. However, since phone targets and speaker targets are both

available (although not with a single sample), we can train the joint system from

scratch. Our experiments show that the two approaches lead to similar performance,

so we just report the results with the system trained from scratch.

As mentioned in the previous experiment, ASR and SRE are both collaborative

and competitive, so their relative contribution to the collaborative training should

be balanced. In our experiments, the Fisher database is about 3 times as large as the

SWB database. This means that the partial collaborative training might be biased

towards the SRE training. To investigate the impact of the bias, we conducted four

sets of experiments, where the amount of the SRE data extracted from Fisher varied

from 0.5 to 3 times of the SWB data. The data selection was utterance-based, and

the number of target speakers was constant.

The baseline systems are the single-task ASR and SRE systems trained with SWB

and Fisher respectively, as shown in Table 5 and Table 7, respectively. Table 9 shows

the results with the complete partial collaborative training. For a clear comparison,

the baseline results are also presented. It can be observed that the trend of the

performance is like a combination of the results in Table 6 and Table 8, taking into

account the relative data volume for the two tasks. Specifically, more ASR-oriented

training generally improves both ASR and SRE, and more SRE-oriented training

improves SRE more significantly, but hurts ASR. Importantly, an appropriate data

ratio (e.g., 1:0.5) leads to good performance for both tasks: it obtains the best ASR

result, and a very competitive SRE result. Focusing on each single task, the com-

plete partial collaborative training obtains the best performance on each of them

(22.6 on ASR and 10.54 on SRE). Interestingly, the performance on SRE does not

increase monotonically with more Fisher data. This can be attributed to the col-

laborative and competitive mechanism: too much speaker data leads to better SRE

performance but hurts ASR, and the worse ASR performance may in turn impact

SRE. In other words, a good ASR benefits SRE in the complete partial training.

This is very different from the SRE-oriented partial training where SRE is the only

goal of the training so that it can be improved even if the ASR performance is bad.

We therefore conclude that the SRE performance can be improved in two ways:

by complete partial training (as in Table 9) to seek for better auxiliary informa-

tion, or by SRE-oriented partial training (as in Table 8) to seek for SRE-oriented

optimization. These two approaches have different rationalities and their optimal

configurations are clearly distinct, and which model is optimal is undetermined.
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Table 9 Complete partial collaborative training with both SWB and Fisher

Feedback SWB & Fisher ASR SRE

Input Ratio WER% EER%

i f o g

- - 24.0 (SWB) 15.95 (Fisher)
√

1 : 0.5 23.2 11.44
√

1 : 0.5 22.6 10.91
√

1 : 1 24.2 11.09
√

1 : 1 23.2 10.85
√

1 : 2 26.0 10.54
√

1 : 2 24.5 11.07
√

1 : 3 28.8 11.13
√

1 : 3 26.5 12.05

5.3 Discussion

The experiments presented in this section clearly demonstrate the capacity of collab-

orative learning with the multi-task recurrent model. However, to make the model

most effective, there are several important issues that need to be addressed. First of

all, as the information propagation paths are rather flexible, and the design of such

paths largely depends on the structure of each individual component, it is hard to

predict which configuration is optimal. In our experiments, the input gate and the

nonlinear activation function seem the best to receive the recurrent information,

but for other tasks (e.g., language recognition and speaker recognition) and other

structures (e.g., vanilla RNN), the propagation paths need to be carefully chosen

and the optimal design can be only determined by experiments. This can be a time

consuming task. A better approach involving either parameter shrinkage or prior

knowledge from cognitive study is desirable.

Another issue that needs to be addressed is the structure and configuration for

individual components in joint systems. Due to the recurrent structure, optimal

models/configurations may be different from the ones used in single-task systems.

For example, in our experiments voice activity detection (VAD) works well in the

single-task SRE systems, but in the joint system, VAD leads to worse performance.

This is possibly attributed to the signal discontinuity caused by VAD, which results

in worse ASR and hence worse SRE.

Finally, different tasks may behave very differently in collaborative training. For

instance, in our experiments SRE learning seems more aggressive than ASR learn-

ing: a relatively small amount of speaker-labeled data may lead to a clearly SRE-

biased joint model. This ‘asymmetry’ among tasks is closely related to the collabo-

ration and competition mechanism, and can be attributed to a multitude of factors

for the two tasks, e.g., the cost functions, the separability among targets, and the

strength of the gradient back propagated through the recurrent connections. In our

experiments, control of the relative contribution of each task in the collaborative

training was simply based on empirical evidence, but more theoretical ways would

be desirable.
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6 Conclusions

We have proposed a novel collaborative learning approach based on multi-task re-

current neural model, and applied this approach for joint learning of speech and

speaker recognition tasks. A thorough empirical investigation was conducted and

the results demonstrated that the presented approach can learn speech and speaker

models in a joint way and can improve the performance on both tasks. In particular,

we have demonstrated the feasibility of collaborative training with partially-labeled

data, which emphasizes the practical value of this approach. Future work involves

further investigation on the collaborative structure and the task asymmetry. Ap-

plying the method to other collaborative tasks will also be explored.
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