

Special Talks for CSCI-UA.0480-006:

Statistical NLP: A Machine Learning Perspective

Miao Fan

Ph.D. candidate on C.S.

fanmiao.cs101.cs102@gmail.com

0.1 Self-introduction

Miao Fan (Michael)

Bib: <http://1drv.ms/1ijSyg9>

Email: famiao.cs.tu@gmail.com

4th year Ph.D. candidate on C.S. jointly supervised by
Tsinghua University (4 years) and **New York University (1 year)**.

Research Interest: *Machine Learning* and *Natural Language Processing*.

Google Scholar: Just google “Miao Fan” and click the **1st** item.
<https://scholar.google.com/citations?user=aPlHReAAAAAJ&hl=en>

Hobby: table tennis, swimming, playing the piano.

0.2 Overview

- **What do we mainly learn from [CSCI-UA.0480-006?](#)**
 - NLP from the perspective of “**Linguistics**”.
- **What I am and will be talking about in this special session are,**
 - NLP from the perspective of “**Statistics**” and “**Machine Learning**”.
 - Some **canonical approaches** for **real-world applications**.

0.2 Overview

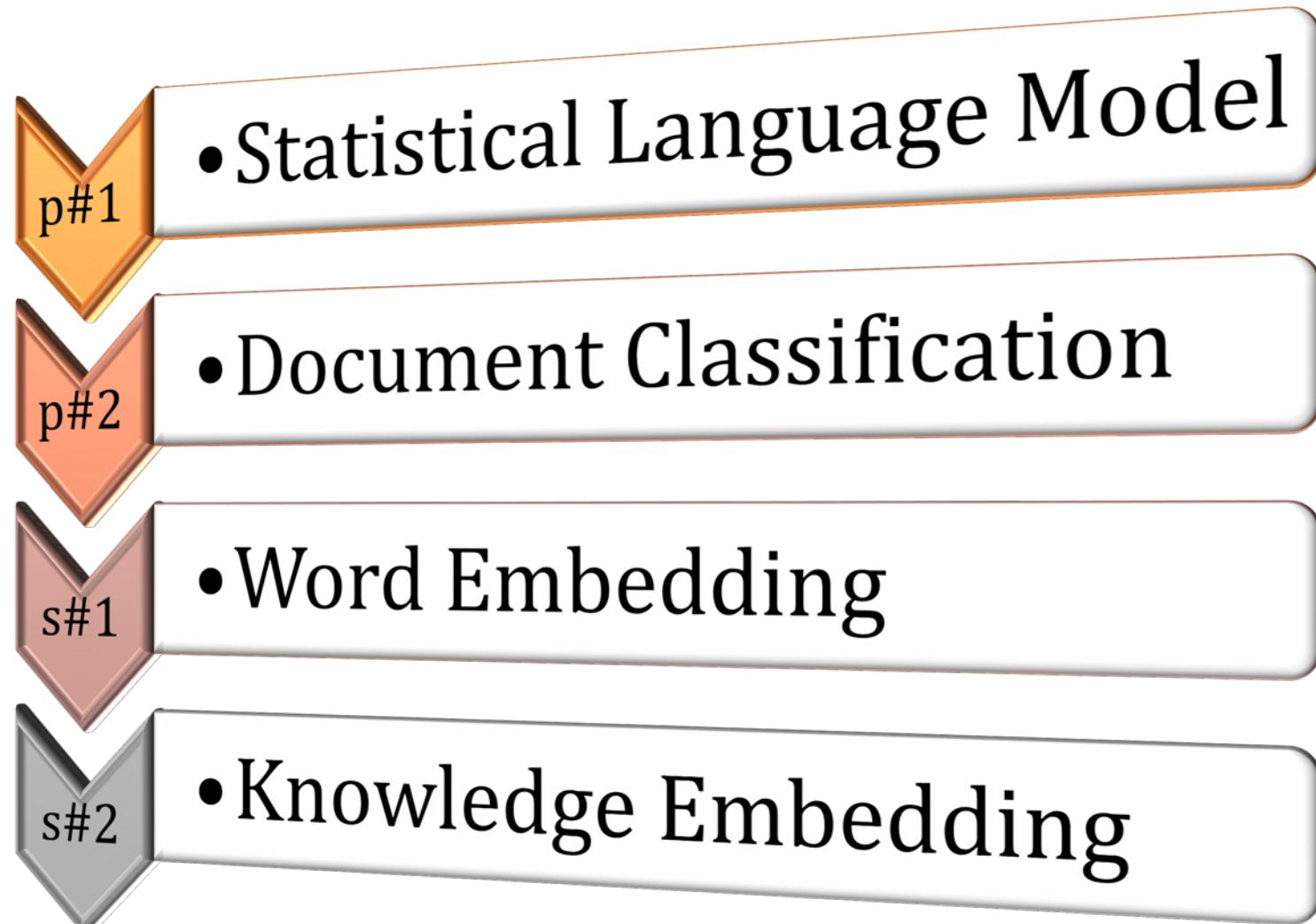
- **How to define that a computer can learn (be intelligent)?**
 - *A computer program* is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experiences **E**. (Tom Mitchell, CMU, 1997) [1].
- **Real-world Applications?**
 - Some tasks could be **hard coding (explicitly programmed)**. Easy for machine but difficult for human beings:
 - **Calculator:** <https://www.google.com/#q=calculator>.
 - We know how to write commands (codes) to guide the machine process the task step by step.
 - Some are rather **simple** for human beings, but **hard for machine to process**:
 - **OK Google!:** <https://www.google.com/> (Speech)
 - **Object recognition in image:** <https://www.metamind.io/> (Image)
 - **Question Answering:** <http://www.wolframalpha.com/> (Text)
 - **Product Recommendation:** <http://nyti.ms/19LT8ic>
 - We **DON'T** know how to write commands (codes) to guide the machine process the task step by step.

0.2 Overview

- Let's take an example about how to describe a real-world problem in Machine Learning definition: **Email Spamming**

- Task T:
 - Filter spam emails
- Experience E:
 - Emails labeled by “spam” or ‘not spam’
- Performance Measure P:
 - Accuracy?
 - Others?

0.3 Roadmap



Special Talks for [CSCI-UA.0480-006](#):

Statistical NLP: A Machine Learning Perspective

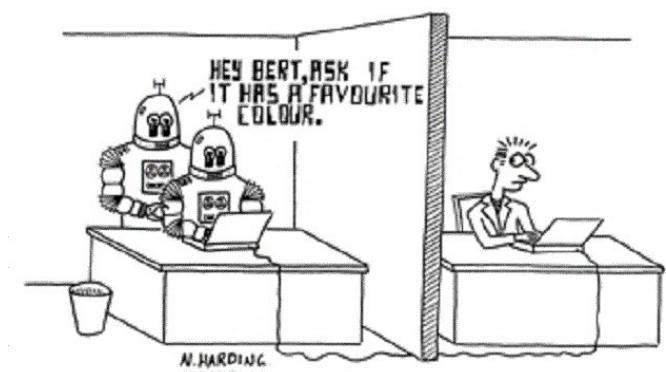
Precursor #1: Statistical Language Model (SLM)

P#1.1: Task (T) of Statistical Language Model

- It's rather flexible to define the task of SLM:
 - Make computer to **predict** (measure) whether a sentence is generated by a human.
 - Make computer to **generate** human language (sentence) automatically.

For example,

- *I am a student from NYU.*
- *NYU a student from I am.*
- Which one is more likely spoken by **an educated guy?** ☺



P#1.2: Experience (E) of Statistical Language Model

- We can *train* your computer to *understand your tongue*.
 - Just feed the model with your daily spoken English.
 - The intelligent program is expected to *improve* the capability of understanding natural language ***better and better***, as we keep on feeding text corpus generated by human beings.
 - Start *teaching* your computer *to write sentences!*

P#1.3: Statistical Language Model

- Let's regard sentences as words in sequence with STOP sign:

- the dog barks STOP
- the cat laughs STOP
- the cat saw the dog STOP
- the STOP
- cat the dog the STOP
- cat cat cat STOP
- STOP

P#1.3: Statistical Language Model

- *Vocabulary Set:* $V = \{\text{the}, \text{dog}, \text{laughs}, \text{saw}, \text{barks}, \text{cat} \dots\}$
- *A sentence:* $s = x_1 x_2 \dots x_n; (x_i \in V)$
- We measure the probability of s :
 - $p(s)$
- For all possible expressions:
 - $\sum p(x_1, x_2, \dots x_n) = 1$
- Let's recap:
 - $P(\text{I am a student from NYU.}) > P(\text{NYU a student from I am.})$

P#1.3: Statistical Language Model

- *Ngram Model (Context):*

- Bigram:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

$$P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_{i-1} = x_{i-1})$$

- Trigram:

$$\begin{aligned} & P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \\ &= \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1}) \end{aligned}$$

...

- Unigram: Do it by yourself.

P#1.4: Performance (P) of Statistical Language Model

- How to measure the Capability of Understanding Language?
 - Perplexity!
- How is the perplexity (l) defined?
 - Suggesting that we have \mathbf{m} sentences $(s^{(1)}, s^{(2)}, s^{(3)}, \dots, s^{(m)})$ for testing.
 - And \mathbf{M} to be the total number of words in the test corpus.

$$l = \frac{1}{M} \sum_{i=1}^m \log_2 p(s^{(i)})$$

P#1.5: Demo of Statistical Language Model with NLTK 3.0

- Therefore, we have to demo how to generating nGrams from your texts:

example_1.py

Note

The `generate()` method is not available in NLTK 3.0 but will be reinstated in a subsequent version.

Special Talks for [CSCI-UA.0480-006](#):

Statistical NLP: A Machine Learning Perspective

Precursor #2: Document Classification (DC)

P#2.1: Task (T) of Document Classification

- Classify a document into a *pre-defined* category.
 - For example, New York Times

World U.S. Politics N.Y. Business Opinion Tech Science Health Sports Arts Style Food Travel Magazine T Magazine Real Estate ALL

SPECIAL REPORT

How 4 Federal Lawyers Paved the Way to Kill Bin Laden

By CHARLIE SAVAGE 12:53 PM ET

The lawyers tried to prepare for any legal obstacles — and made it all but inevitable that Osama bin Laden would be killed, not captured.

151 Comments

The Opinion Pages

The Military Escalation in Iraq and Syria

By THE EDITORIAL BOARD

The United States is being drawn ever more deeply into a war that lacks an attainable end goal.

- Editorial: A Budget Deal to Live By, for Now
- Friedman: Telling Mideast Negotiators, 'Have a Nice Life'
- Edsall: Is There a Silver Lining

OP-ED CONTRIBUTORS
Why the Annual Mammogram Matters

By SUSAN R. DROSSMAN, ELISA R. PORT and EMILY B. SONNENBLICK

The American Cancer Society's new guidelines are wrong. Frequent testing is still the best.

- Room for Debate: Hurricane Sandy's Lessons for the Future
- Rattner: Don't Raise Interest Rates

P#2.2: Experiences (E) of Document Classification

- We feed millions news about (Not about) politics to intelligent machines.

Deeply Divided
Republican Electorate
Drifts Toward Ben
Carson, Poll Shows

By JONATHAN MARTIN and MEGAN
THEE-BRENAN

The survey of Republicans
shows Mr. Carson leading
Donald J. Trump in the
presidential race, and highlighting
divisions within the party.

Monica Almeida/The New York Times

From left, Ben Carson, Donald J.
Trump, and Jeb Bush at the
Republican presidential debate in
September.

Politics

CNBC May Be the Big Winner of the
Next Republican Debate

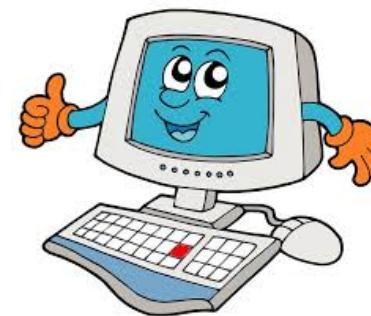
By JOHN KOBLIN

The cable financial news network is expecting to beat
its own viewership records and is commanding top
dollar for advertising as it airs Wednesday's Republican debate.

Ben Carson Puts Spotlight on Seventh-
Day Adventists

By ALAN RAPPEPORT

The Republican presidential candidate's faith, little
known to many, could prove to be both a strength and
a liability as he moves forward.



N.F.L.'s Forays Into
London Muddle Its
Stance on Sports
Betting

By KEN BELSON and JOE DRAPE
46 Minutes Ago

The N.F.L. has long opposed
sports betting, but in Britain,
where it's banned, it is legal and
which now poses N.F.L. games, the
line has been blurred.

Tim Ireland/Associated Press
Far, nose, for a game at an N.F.L.
fan rally in London Saturday after
a currency game between the
Bills and the Jaguars.

Not Politics

Thursday's Matchup: Miami Dolphins at New England Patriots
10 Minutes Ago

ON PRO BASKETBALL

Double Vision or Not,
Derrick Rose Has His
Sights Set on a Title

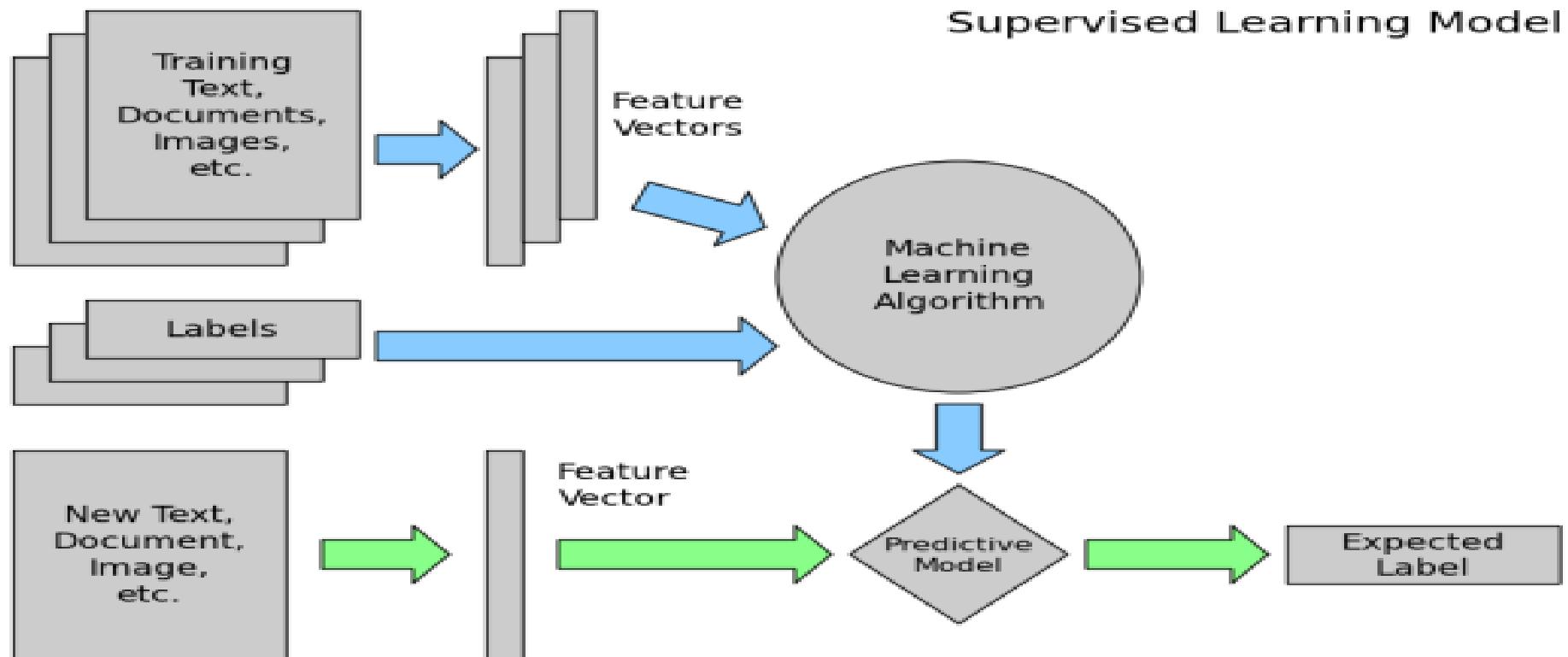
By HARVEY ARATON 12:26 PM ET

He was all the point guard rage a
half-decade ago, but over the last
four seasons, Rose was limited to
100 of a possible 312 games.

Dennis Wierzbicki/USA Today Sports, via
Reuters

P#2.3: Document Classification Model

- Framework of **Supervised Learning**.



P#2.3: Document Classification Model

- Why we know this piece of news is mostly likely about politics?

By JONATHAN MARTIN and MEGAN THEE-BRENAN OCT. 27, 2015

Email

Share

Tweet

Save

More

The latest New York Times-CBS News poll makes [Republican Party](#) divisions clear, from the choice of a presidential nominee to whether party members are willing to see their leaders compromise on legislation.

For the first time since The Times and CBS News began testing candidate preferences in July, the retired neurosurgeon [Ben Carson](#) has displaced [Donald J. Trump](#) as the leader of the large Republican field, although the difference is well within the poll's margin of sampling error. The churn in the field suggests more volatility as the contest draws closer to the primaries early next year.

Mr. Carson and Mr. Trump draw support from [different segments of the Republican electorate](#)

From left, Ben Carson, Donald J. Trump, and Jeb Bush at the Republican presidential debate

P#2.3: Document Classification Model

- How could we know he is Mr. Trump, not Hillary?
 - Because of his keyword (China): https://www.youtube.com/watch?v=RDrfE9I8_hs
 - Because of his key phrase (Big League):
http://www.slate.com/blogs/the_slatest/2015/09/24/bigly_or_big_league_what_exactly_is_donald_trump_saying.html
 - If the computer know that $P(\text{China}|\text{Trump}) > P(\text{China}|\text{Other candidates})$ from news.
 - Then given China, $P(\text{Trump}|\text{China})$?

P#2.3: Document Classification Model

- 1) **Naïve Bayes Model:**

- We'd like to know $P(y|x)$, given a document $x = (x_1, x_2, x_3, \dots, x_n)$. (*Feature Vectors*)
- y is the variable of categories. (*Labels*)

$$P(y | x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots, x_n | y)}{P(x_1, \dots, x_n)}$$

Naive Bayes Assumption: $P(x_i | y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i | y)$,

$$P(y | x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^n P(x_i | y)}{P(x_1, \dots, x_n)}$$

$$P(y | x_1, \dots, x_n) \propto P(y) \prod_{i=1}^n P(x_i | y)$$

↓

$$\hat{y} = \arg \max_y P(y) \prod_{i=1}^n P(x_i | y),$$

P#2.3: Document Classification Model

- 2) *Logistic Regression Model:*

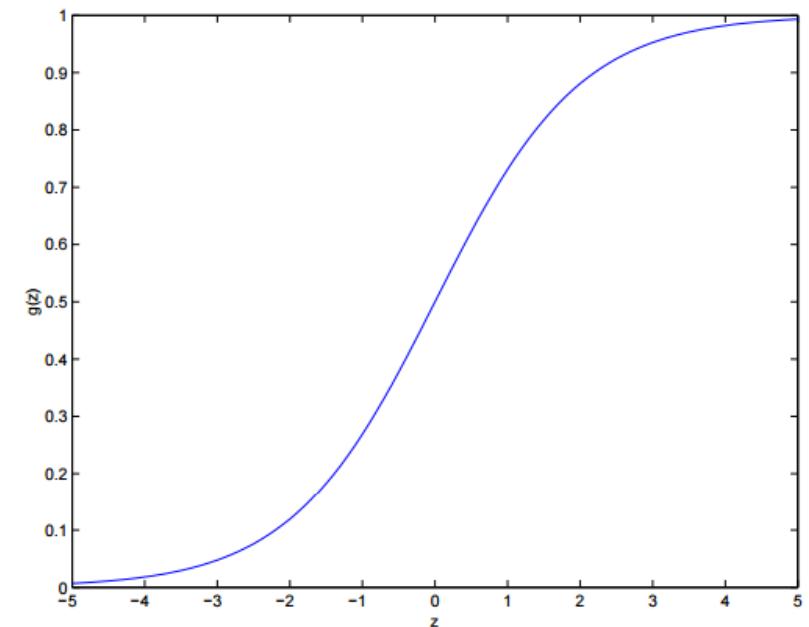
- *Given a document $x = (x_1, x_2, x_3, \dots, x_n)$. (Feature Vectors)*
- *y is the variable of categories. (Labels)*

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

$\theta = (\theta_1, \theta_2, \dots, \theta_n)$ is the parameter vector corresponding to $x = (x_1, x_2, x_3, \dots, x_n)$



P#2.3: Document Classification Model

- How do we generate the *feature vectors* from documents?
- Bag of words (BOW) Binary representation:

some	tigers	live	in	the	zoo	green	is	a	color	go	to	new	york	city	
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	class 1
0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	class 2
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	class 3

< 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 > Unknown class
 < 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 > class 1 (6 matching terms)
 < 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 > class 2 (14 matching terms - winner!!)
 < 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 > class 3 (7 matching terms)

- Any Other representation? (TFIDF?)

some	tigers	live	in	the	zoo	green	is	a	color	go	to	new	york	city	
0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	unknown class

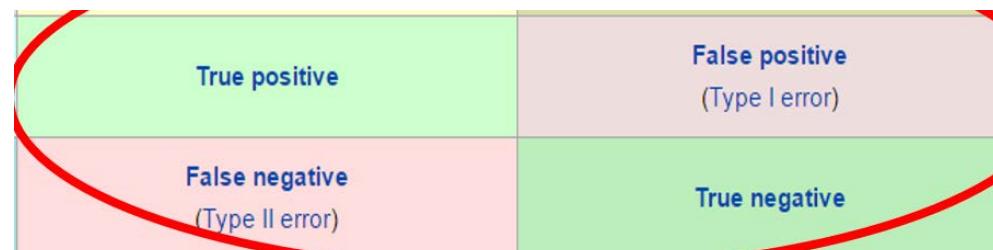
P#2.4: Performance (P) of Document Classification

- How to measure the performance of (Binary) classification?
 - We have multiple metrics:

		True condition		Prevalence = $\frac{\sum \text{Condition positive}}{\sum \text{Total population}}$	Positive predictive value (PPV), Precision $= \frac{\sum \text{True positive}}{\sum \text{Test outcome positive}}$	False discovery rate (FDR) $= \frac{\sum \text{False positive}}{\sum \text{Test outcome positive}}$
Total population		Condition positive	Condition negative			
Predicted condition	Predicted condition positive	True positive	False positive (Type I error)			
	Predicted condition negative	False negative (Type II error)	True negative		False omission rate (FOR) $= \frac{\sum \text{False negative}}{\sum \text{Test outcome negative}}$	Negative predictive value (NPV) $= \frac{\sum \text{True negative}}{\sum \text{Test outcome negative}}$
Accuracy (ACC) = $\frac{\sum \text{True positive} + \sum \text{True negative}}{\sum \text{Total population}}$	True positive rate (TPR), Sensitivity, Recall $= \frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\sum \text{False positive}}{\sum \text{Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{\text{TPR}}{\text{FPR}}$	Diagnostic odds ratio (DOR) = $\frac{\text{LR}^+}{\text{LR}^-}$		
	False negative rate (FNR), Miss rate $= \frac{\sum \text{False negative}}{\sum \text{Condition positive}}$	True negative rate (TNR), Specificity (SPC) $= \frac{\sum \text{True negative}}{\sum \text{Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{\text{FNR}}{\text{TNR}}$			

P#2.4: Performance (P) of Document Classification

- Besides the *Accuracy*, in some cases, we care more about ***Precision & Recall***.
 - Suppose that we have a **classification task** that *predict* whether a tumor is **malignant** or **benign**, based on some *medical features* such as the tumor's size, position, etc.
 - Suppose that the model we design will label **malignant tumors as positive**.
 - If we predict a tumor as **positive (malignant)**, and the truth is: it is **malignant!** Then **True Positive (TP)**. Congratulations!
 - If we predict a tumor as **negative (benign)**, but the truth is: it is **malignant!** OMG! That's **False Negative(FN)**. That kills people.
 - **Therefore, we care more on recall (The proportion of malignant tumor that we need to find)**, rather than precision.



P#2.5: Demo of Document Classification with Python

1. Structured document from library:



The screenshot shows the Kaggle competition page for 'Titanic: Machine Learning from Disaster'. At the top, there's a small image of the Titanic ship sinking. Below it, the competition title 'Titanic: Machine Learning from Disaster' is displayed with a progress bar indicating it was created on 'Fri 28 Sep 2012' and ends on 'Thu 31 Dec 2015 (2 months to go)'. The main content area features a heading 'Predict survival on the Titanic using Excel, Python, R & Random Forests'. It includes a call to action 'See best practice code and explore visualizations of the Titanic dataset on Kaggle Scripts. Submit directly to the competition, no data download or local environment needed!'. Below this, there's a detailed description of the sinking of the RMS Titanic and a summary of the survival statistics. The left sidebar contains navigation links for 'Dashboard', 'Home', 'Data', 'Make a submission', 'Information', 'Description', 'Evaluation', 'Rules', 'Prizes', 'FAQ', 'Further Reading / Watching', 'Getting Started With Excel', 'Getting Started With Python', 'Getting Started With Python...', 'Getting Started With R...', 'New: Getting Started With R', and 'Submission Instructions'. Another sidebar on the far left includes 'Forum', 'Scripts', 'New Script', and 'New Notebook'.

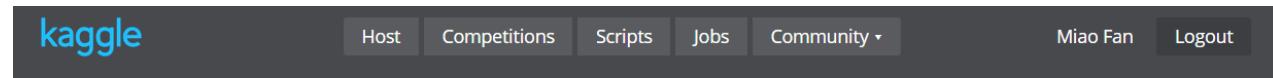
<https://www.kaggle.com/c/titanic>
http://localhost:8888/notebooks/PyNotebook/example_2.ipynb#
How to choose features?
What kind of classifier do we use?

You might use **Scikit-learn** (Machine Learning Modules), **Pandas** (Data Manipulation Package) and **NLTK** (NLP toolkits).

I also suggest you to learn this series of video:

P#2.5: Demo of Document Classification with Python

2. Unstructured Web document



Dato

Completed • \$10,000 • 274 teams

Truly Native?

Thu 6 Aug 2015 – Wed 14 Oct 2015 (13 days ago)

Dashboard

- Home
- Data
- Make a submission

Information

- Description
- Evaluation
- Rules
- Prizes
- Timeline

Forum

Leaderboard

- Public
- Private

My Team

- Your model

My Submissions

Competition Details » Get the Data » Make a submission

Predict which web pages served by StumbleUpon are sponsored

Online media companies rely more and more on paid advertising to keep their lights on and their content engines humming. "Native advertising" is a popular alternative to the unsightly banner ads and infuriating pop-ups of Internet Advertising 1.0. Native ads mimic the core content of the site they're advertising on, ideally avoiding any interruption of the user's experience.

When native advertising is done right, users aren't desperately scanning an ad for a

<https://www.kaggle.com/c/dato-native>

Leave it to YOU!

You may also need Spark! (Distributed Computing)

Special Talks for [CSCI-UA.0480-006](#):

Statistical NLP: A Machine Learning Perspective

State-of-the-art Approach #1: Word Embedding (WE)

S#1.1 Preliminary

- Let's recap:
 - We've talked about "Statistical Language Modeling".
 - Given "*The cat is walking in the bedroom.*"; "*The cat is running across the street!*"
 - Basically, $\Pr(\text{'cat'}|\text{'the'}) = \frac{\#(\text{cat}, \text{the})}{\#(\text{the})}$.

S#1.2 Motivation

- For example, given “*The cat is walking in the bedroom.*” in the training corpus,
 - Could we generalize to make the sentence “*A dog was running in a room.*”
 - *It seems impossible mission for Statistical Language Model based on Ngram learnt by MLE.*
 - *However, we could find word similarity between:*
 - *The/A*
 - *cat/dog*
 - *is/was*
 - *walking/running*
 - *bedroom/room*

S#1.2 Motivation

- The curse of dimensionality!

- If we have a corpus which contains 1,000 sentences (Not many), 5000 tokens (5 tokens per sentence), 2000 words (size of vocabulary) .
- How many possible BI-GRAM terms we need to train? $2000 ^ 2 = ?$
- How many words daily used in English?
 - <http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/>

LANGUAGE	LARGEST DICTIONARY	NUMBER OF WORDS
Chinese	汉语大词典 (Hanyu Da Cidian. Lit: Comprehensive Chinese Word Dictionary)	370,000 words; 23,000 head Chinese character entries
English	The Second Edition of the 20-volume <i>Oxford English Dictionary</i>	171,476 words in current use, and 47,156 obsolete words; 615,100 definitions

- Even bi-gram need to train $170,000 ^ 2 = ?$
- Every float is 4 bytes, $4 \text{ bytes} * 170,000 ^ 2 = 115\text{GB Memory}!$

S#1.2 Motivation

- Let's recap:
 - How we represent features? BOW
 - $<0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0>$ Unknown class
 - $<1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>$ class 1 (6 matching terms)
 - $<0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0>$ class 2 (14 matching terms - winner!!)
 - $<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1>$ class 3 (7 matching terms)
 - Rather sparse, difficult to calculate the similarity with COSINE?
 - What if Cat = (0.6,0.8), dog = (0.7, 0.6)? More dense, similar!

S#1.2 Motivation

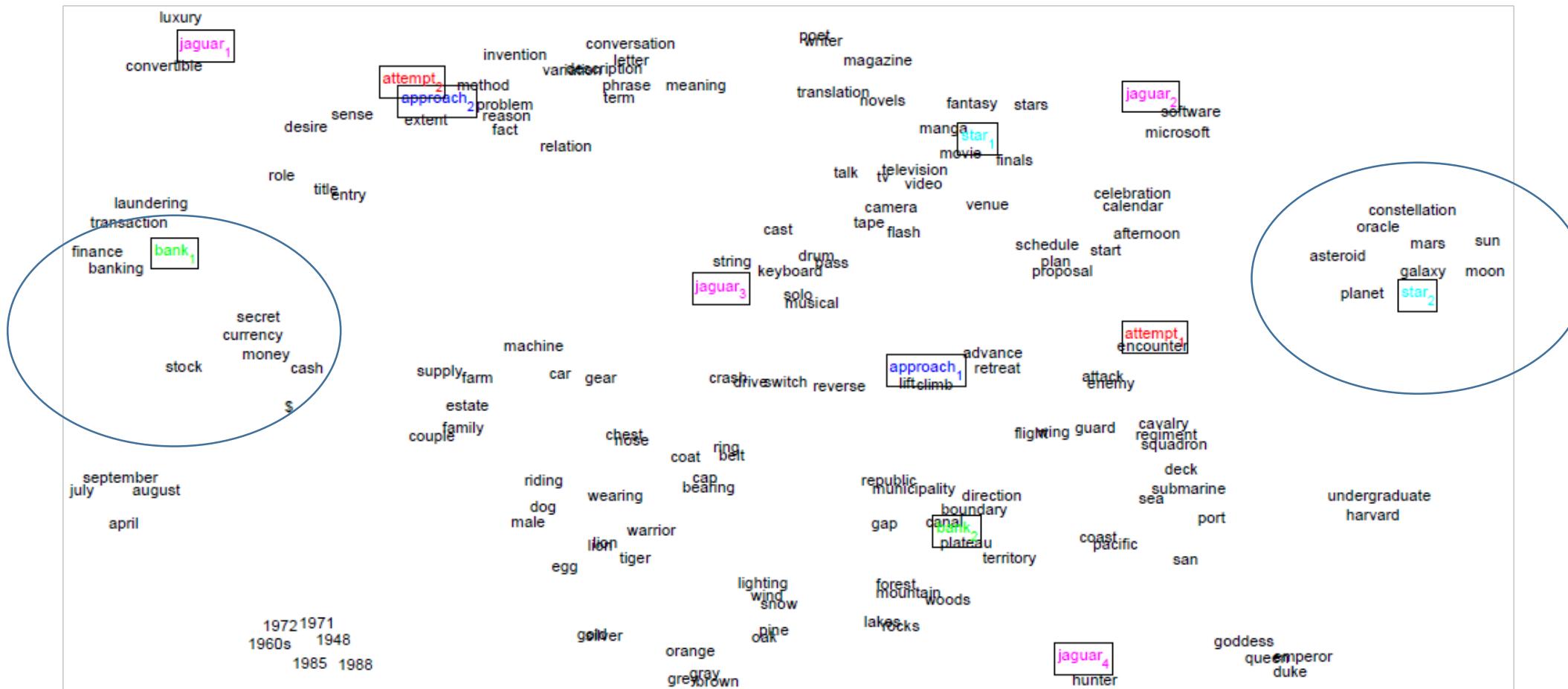


Figure from [3]: <http://www.socher.org/>

S#1.3 Model

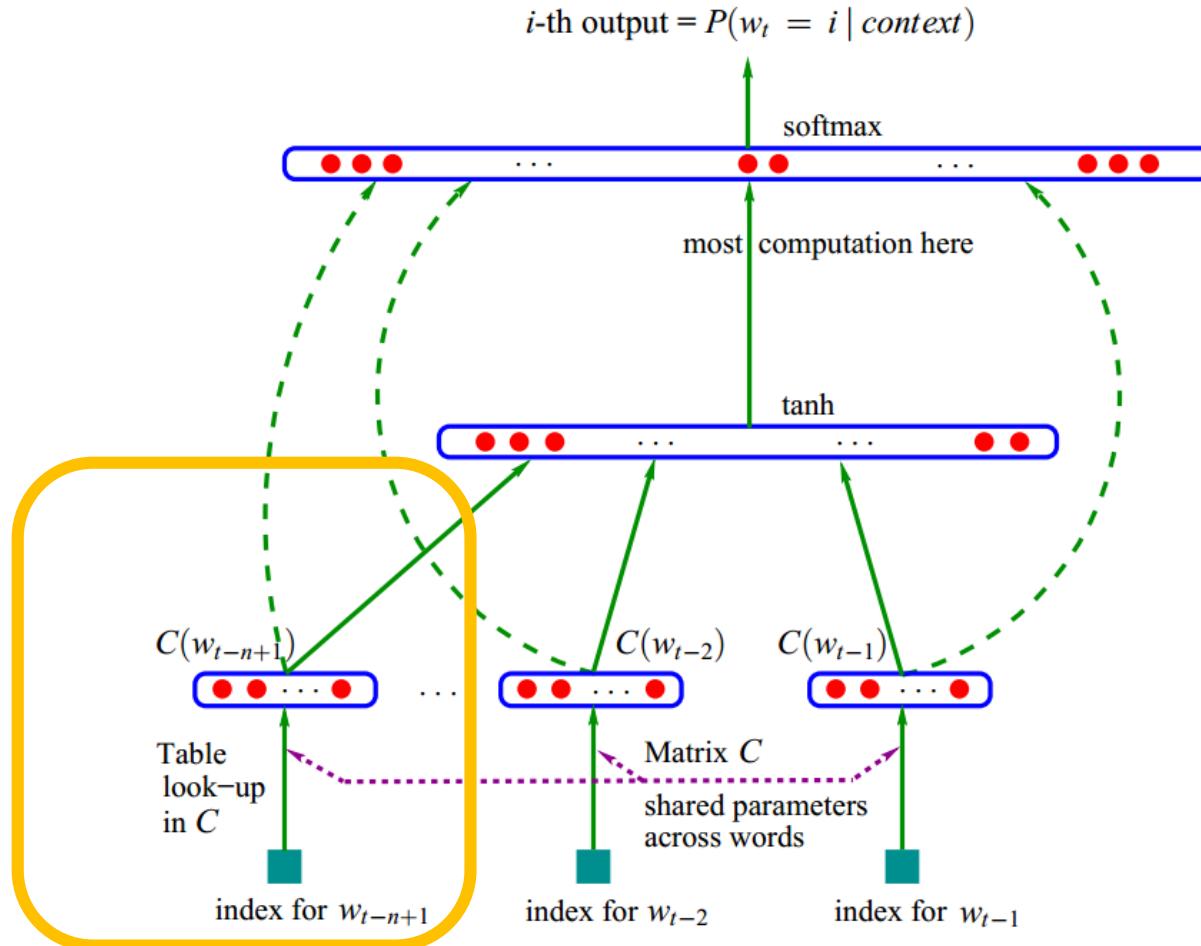
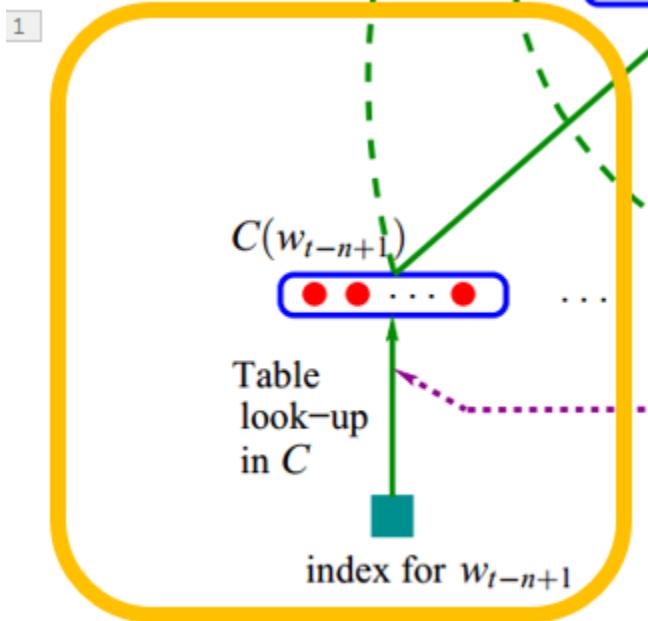
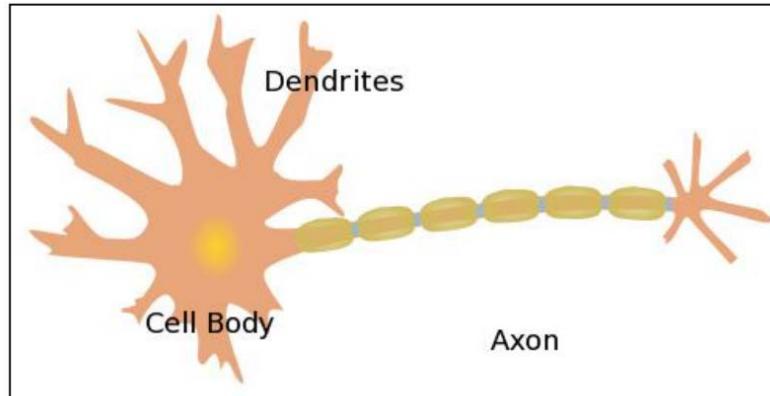
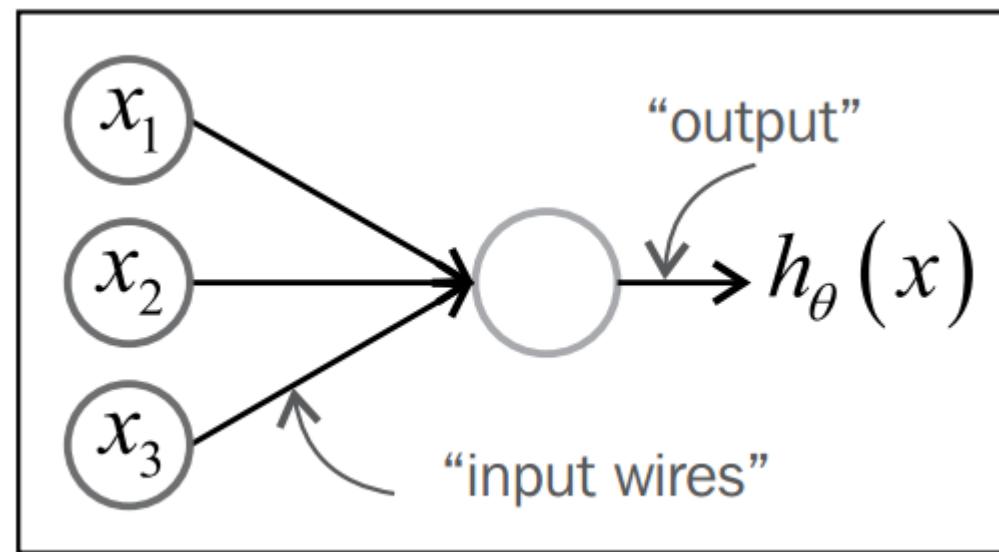


Figure from [2]: Neural Language Model

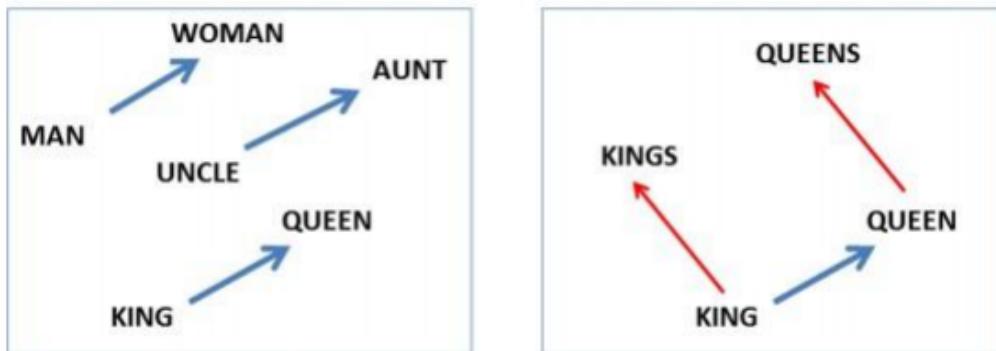
S#1.3 Model



Do you still remember
the "Logistic Regression"
Model?

S#1.4: Discovery

- Promising discovery in **Word Embedding**, in which each word is represented by a **low-dimensional vector**. Ex. King = (0.6, 0.24, 0.4, ..., 0.3); Measuring Linguistic Regularity
 - Syntactic/Semetic Test



$$\begin{aligned} C(\text{king}) - C(\text{queen}) &\approx C(\text{man}) - C(\text{woman}) \\ C(\text{king}) - C(\text{man}) + C(\text{woman}) &\approx C(\text{queen}) \end{aligned}$$

These representations are surprisingly good at capturing syntactic and semantic regularities in language, and that each relationship is characterized by a relation-specific vector offset.

Figure from [4]: Neural Language Model

S#1.5: Low-dimensional representation

- We usually encode each word into a **K (K = 50, 100 or 200)** dimensional vector space.

How many words daily used in English?

<http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/>

LANGUAGE	LARGEST DICTIONARY	NUMBER OF WORDS
Chinese	汉语大词典 (Hanyu Da Cidian. Lit: Comprehensive Chinese Word Dictionary)	370,000 words; 23,000 head Chinese character entries
English	The Second Edition of the 20-volume <i>Oxford English Dictionary</i>	171,476 words in current use, and 47,156 obsolete words; 615,100 definitions

How much memory space do you need?

*Every float is 4 bytes, 4 bytes * 170,000 * 200 = 136MB Memory!*

Compared with 115GB! (1000 TIMES)@

Special Talks for [CSCI-UA.0480-006](#):

Statistical NLP: A Machine Learning Perspective

**State-of-the-art Approach #2: Knowledge Embedding
(KBE)**

S#2.1: Preliminary

- **1. What is knowledge?**
 - We distill the explosive **unstructured web texts** into **structured tables** which record the facts of the world.
 - For example, **Jinping Xi** is the chairman of **CCP**.
- **2 How we present or store the knowledge?**
 - For now, we present or store the knowledge in triplets,
i.e. (head_entity, relationship, tail_entity), abbreviated as (h, r, t).
 - For example, **(Jinping Xi, chairman of, CCP)**
- **3 Is there any free-access repositories of knowledge?**
 - Of course, you can freely download the whole Knowledge Base online.
 - For example, [Freebase](#), NELL, Yago, WordNet...
 - **Just Google THEM!**

S#2.1: Preliminary

- 4 Is knowledge base really useful?
 - Sure it is. Applications such as **Google Knowledge Graph** and **Microsoft Entity Cube**. We discover the connections between entities around the world.

[Google Knowledge Graph](#)

[Microsoft Entity Cube](#)

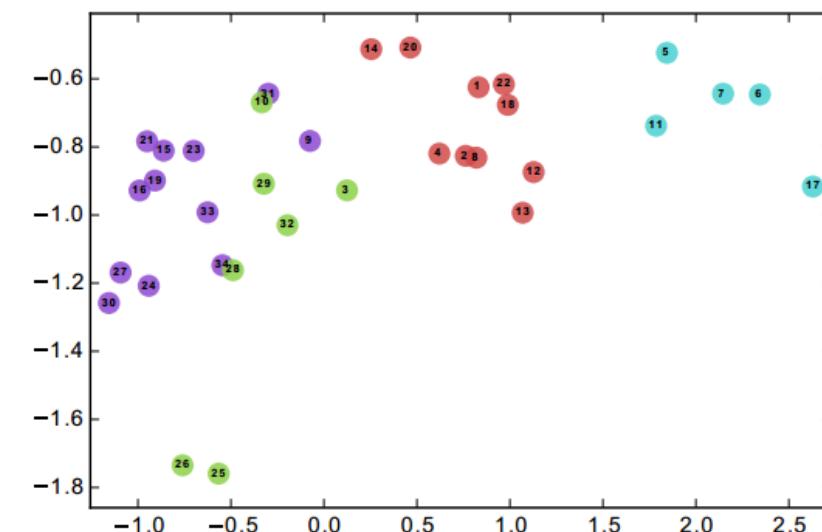
S#2.2: Motivation

- However, the KBs we have are **far from completion**.
 - Recent Study on **Freebase** by **Google Research (WWW 2014)** shows that **71% PERSONS have no known place of birth**, **94%** have no known **parents**, and **99%** have no known **ethnicity**.
- Therefore, we need to explore methods on **automatically** completing knowledge base. (The task: T)
- Here, we focus on knowledge **self-inference** without extra text corpus.
 - **A simple rule for relation inference:**
 - 1st Triplet : (Miao Fan, born in, Liaoning)
 - 2nd Triplet: (Liaoning, province of, China).
 - => rule inference, **new fact: (Miao Fan, Nationality, Chinese)**.
 - **But the question is: is it possible to heuristically design rules that adequate for billions of facts?**
 - **Tough work!!**

S#2.2: Motivation



(a) Input: Karate Graph



(b) Output: Representation

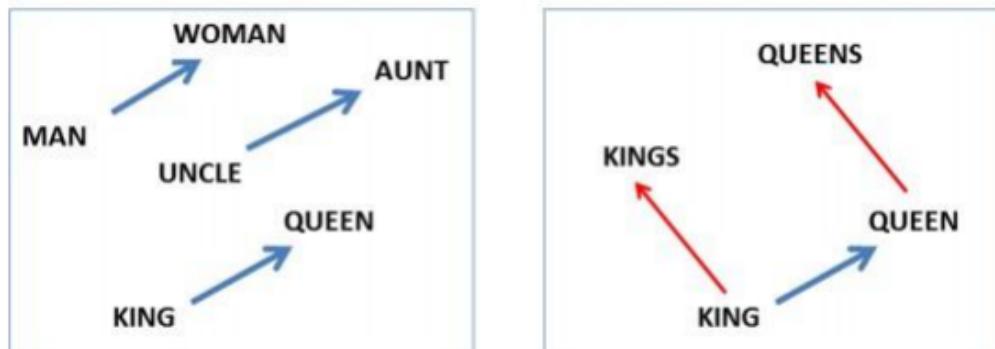
Figure from [5]: DeepWalk

S#2.2: Motivation

- Promising discovery in **Word Embedding**, in which each word is represented by a **low-dimensional vector**. Ex. King = (0.6, 0.24, 0.4, ..., 0.3);

Measuring Linguistic Regularity

- Syntactic/Semetic Test



$$C(\text{king}) - C(\text{queen}) \approx C(\text{man}) - C(\text{woman})$$

$$C(\text{king}) - C(\text{man}) + C(\text{woman}) \approx C(\text{queen})$$

These representations are surprisingly good at capturing syntactic and semantic regularities in language, and that each relationship is characterized by a relation-specific vector offset.

S#2.2: Motivation

- How about **Knowledge Embedding**?

In the Word Embedding Space:

$$\text{China} - \text{Beijing} \approx \text{France} - \text{Paris}$$

How about Knowledge Embedding Space?

$$\text{China} - \text{Beijing} \approx \text{capital_city_of}$$

Therefore, given a triplet (h, r, t) ,

$$h + r \approx t$$

$(h: \text{Beijing}, r: \text{capital_city_of}, t: \text{China})$

$(h: \text{Paris}, r: \text{capital_city_of}, t: \text{France})$

S#2.3: Modeling



Fig. 1. **LMNNE** has two objects optimized simultaneously: *PULL* the positive tail entities (t^+) close to $h + r$ and *PUSH* the negative tail entities (t^-) out of the margin γ . In this case, all the entities and relations are embedded into the 2D vector space and we use *L₂ norm* to measure the distance.

Figure from [6]: LMNNE

S#2.3: Modeling

- **Triplet measurement:**

$$f_r(h, t) = \|h + r - t\|, \quad (1)$$

- Pull the positive triplets **Together!**

$$\mathcal{L}_{pull} = \text{Min} \sum_{(h, r, t) \in \Delta} \sum_{(h^+, r, t^+) \in \Delta_{(h, r, t)}^+} (\|h - h^+\| + \|t - t^+\|). \quad (2)$$

- Push the negative triplets **Away!**

$$\mathcal{L}_{push} = \text{Min} \sum_{(h, r, t) \in \Delta} \sum_{(h^-, r, t^-) \in \Delta_{(h, r, t)}^-} [\gamma + f_r(h, t) - f_r(h^-, t^-)]_+ \quad (3)$$

- **Overall Objective:** $\mathcal{L} = \text{Min} \mu \mathcal{L}_{pull} + (1 - \mu) \mathcal{L}_{push}.$ (4)

S#2.4: Algorithms

Algorithm 1 The Learning Algorithm of LMNNE

Input:

Training set $\Delta = \{(h, r, t)\}$, entity set E , relation set R ; dimension of embeddings d , margin γ , learning rate α and β for \mathcal{L}_{pull} and \mathcal{L}_{push} respectively, convergence threshold ϵ , maximum epoches n and the trade-off μ .

```

1: foreach  $r \in R$  do
2:    $r := \text{Uniform}(\frac{-6}{\sqrt{d}}, \frac{6}{\sqrt{d}})$ 
3:    $r := \frac{r}{\|r\|}$ 
4: end foreach
5:  $i := 0$ 
6: while  $Rel.loss > \epsilon$  and  $i < n$  do
7:   foreach  $e \in E$  do
8:      $e := \text{Uniform}(\frac{-6}{\sqrt{d}}, \frac{6}{\sqrt{d}})$ 
9:      $e := \frac{e}{\|e\|}$ 
10:  end foreach
11:  foreach  $(h, r, t) \in \Delta$  do
12:     $(h', r', t') := \text{Sampling}(\Delta'_{(h, r, t)})$ 
13:    if  $(h', r', t') \in \Delta_{(h, r, t)}^+$  then
14:      Updating:  $\nabla_{(h, r, t, h', t')} \mathcal{L}_{pull}$  with:  $\alpha\mu$ 
15:    end if
16:    if  $(h', r', t') \in \Delta_{(h, r, t)}^-$  then
17:      Updating:  $\nabla_{(h, r, t, h', t')} \mathcal{L}_{push}$  with:  $\beta(1 - \mu)$ 
18:    end if
19:  end foreach
20: end while

```

Output:

All the embeddings of e and r , where $e \in E$ and $r \in R$.

Step 1: Uniformly Initial Vectors

Step 2: Pull positive triplets

Step 3: Push negative triplets

Step 4: Updating Embeddings with SGD

S#2.5: Experiments

TABLE I. STATISTICS OF THE DATASETS USED FOR LINK PREDICTION TASK.

DATASET	WN18	FB15K
#(ENTITIES)	40,943	14,951
#(RELATIONS)	18	1,345
#(TRAINING EX.)	141,442	483,142
#(VALIDATING EX.)	5,000	50,000
#(TESTING EX.)	5,000	59,071

Given h, r , predicting $t(s)$

$$RANK \rightarrow d(h + r - t)$$

1. Link Prediction (predict t , give h and r)
2. Triplet Classification.

TABLE II. LINK PREDICTION RESULTS. WE COMPARED OUR PROPOSED LMNNE WITH THE STATE-OF-THE-ART METHOD (TRANSE) AND OTHER PRIOR ARTS.

DATASET	WN18				FB15K			
	MEAN RANK		MEAN HIT@10		MEAN RANK		MEAN HIT@10	
METRIC	Raw	Filter	Raw	Filter	Raw	Filter	Raw	Filter
Unstructured	315	304	35.3%	38.2%	1,074	979	4.5%	6.3%
RESCAL	1,180	1,163	37.2%	52.8%	828	683	28.4%	44.1%
SE	1,011	985	68.5%	80.5%	273	162	28.8%	39.8%
SME (LINEAR)	545	533	65.1%	74.1%	274	154	30.7%	40.8%
SME (BILINEAR)	526	509	54.7%	61.3%	284	158	31.3%	41.3%
LFM	469	456	71.4%	81.6%	283	164	26.0%	33.1%
TransE	294.4	283.2	70.4%	80.2%	243.3	139.9	36.7%	44.3%
LMNNE	257.3	245.4	73.7%	84.1%	221.2	107.4	38.3%	48.2%

(Jinping Xi, chairman of, ?)

S#2.6: Conclusion

- Contributions:
 - From *sparse representations* to *dense representations*.
 - Low-dimensional vector spaces
 - Facilitate *statistical learning*.
 - Similarity & probability computing.
 - *Scalability* possible.
 - Make it possible to tackle with large-scale graph computing.

S#2.7: Future Work

- Several **promising directions** if you would like to follow our work:
 - **Knowledge Embedding with text corpus.**
 - How about adopt Wikipedia. Please Check Miao Fan's Google Scholar
 - **Parallel SGD Training for Knowledge Embedding.**
 - Map-reduce. Please Check Miao Fan's Google Scholar.
 - **Question-Answering Embedding?**
 - $\text{Rank}(\text{Q(What's the capital city of China)} \cdot \text{A(Beijing)})$?

Acknowledgments

- Thanks to the **Instructor**: [Adam Meyers](#) for his comments.
- Thanks to [Prof. Ralph Grishman](#) and all the members of [Proteus Project](#).

References

- [1] Machine Learning, [Tom Mitchell](#), McGraw Hill, 1997.
- [2] Bengio, Yoshua, et al. "A neural probabilistic language model." *The Journal of Machine Learning Research* 3 (2003): 1137-1155.
- [3] Huang, Eric H., et al. "Improving word representations via global context and multiple word prototypes." *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1*. Association for Computational Linguistics, 2012.
- [4] Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in Continuous Space Word Representations." In *HLT-NAACL*, pp. 746-751. 2013.
- [5] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.
- [6] Fan, Miao, Qiang Zhou, Thomas Fang Zheng, and Ralph Grishman. "Large Margin Nearest Neighbor Embedding for Knowledge Representation." *arXiv preprint arXiv:1504.01684* (2015).

Thanks for your attention!

Stay Hungry, Stay Foolish.
fanmiao.csdt.thu@gmail.com