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0.1 Self-introduction
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0.2 Overview 
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• What do we mainly learn from CSCI-UA.0480-006?

• NLP from the perspective of “Linguistics”.

• What I am and will be talking about in this special session are,

• NLP from the perspective of “Statistics” and “Machine Learning”.

• Some canonical approaches for real-world applications.

http://cs.nyu.edu/courses/fall15/CSCI-UA.0480-006/


0.2 Overview 
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• How to define that a computer can learn (be intelligent)?
• A computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, 
improves with experiences E. (Tom Mitchell, CMU, 1997) [1].

• Real-world Applications?
• Some tasks could be hard coding (explicitly programmed). Easy for machine but 

difficult for human beings:
• Calculator: https://www.google.com/#q=calculator. 
• We know how to write commands (codes) to guide the machine process the task step by step.

• Some are rather simple for human beings, but hard for machine to process: 
• OK Google!: https://www.google.com/ (Speech)
• Object recognition in image: https://www.metamind.io/ (Image)
• Question Answering: http://www.wolframalpha.com/ (Text)
• Product Recommendation: http://nyti.ms/19LT8ic
• We DON’T know how to write commands (codes) to guide the machine process the task step by step.

https://www.google.com/%23q=calculator
https://www.google.com/
https://www.metamind.io/
http://www.wolframalpha.com/
http://nyti.ms/19LT8ic


0.2 Overview 
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• Let’s take an example about how to describe a real-world problem 
in Machine Learning definition: Email Spamming

• Task T:  
• Filter spam emails

• Experience E: 
• Emails labeled by “spam” or ‘not spam’

• Performance Measure P:
• Accuracy?
• Others?



0.3 Roadmap
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Special Talks for CSCI-UA.0480-006:

Statistical NLP: A Machine Learning Perspective

Precursor #1: Statistical Language Model (SLM)
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P#1.1: Task (T) of Statistical 
Language Model

• It’s rather flexible to define the task of SLM:
• Make computer to predict (measure) whether a sentence is generated by a human.
• Make computer to generate human language (sentence) automatically.

For example,
• I am a student from NYU.
• NYU a student from I am.
• Which one is more likely spoken by an educated guy? 
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P#1.2: Experience (E) of Statistical 
Language Model

• We can train your computer to understand your tongue.

• Just feed the model with your daily spoken English.

• The intelligent program is expected to improve the capability of 
understanding natural language better and better, as we keep on feeding 
text corpus generated by human beings.

• Start teaching your computer to write sentences!
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P#1.3: Statistical Language Model
• Let’s regard sentences as words in sequence with STOP sign:

• the dog barks STOP 
• the cat laughs STOP 
• the cat saw the dog STOP
• the STOP 
• cat the dog the STOP 
• cat cat cat STOP 
• STOP 
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P#1.3: Statistical Language Model
• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆: 𝑉𝑉 = {𝑡𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐… }
• 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠 = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛; (𝑥𝑥𝑖𝑖 ∈ 𝑉𝑉)
• We measure the probability of s:

• 𝑝𝑝 𝑠𝑠
• For all possible expressions:

• ∑𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛 = 1
• Let’s recap:

• P(I am a student from NYU.) > P(NYU a student from I am.)
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P#1.3: Statistical Language Model
• 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶):

• Bigram:

• Trigram: 

• Unigram: Do it by yourself.
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P#1.4: Performance (P) of Statistical 
Language Model

• How to measure the Capability of Understanding Language?
• Perplexity!

• How is the perplexity (𝑙𝑙) defined?
• Suggesting that we have m sentences (𝑠𝑠(1), 𝑠𝑠(2), 𝑠𝑠(3), … , 𝑠𝑠(𝑚𝑚)) for testing.
• And M to be the total number of words in the test corpus.

𝑙𝑙 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑚𝑚

log2 𝑝𝑝(𝑠𝑠(𝑖𝑖))
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P#1.5: Demo of Statistical Language 
Model with NLTK 3.0
• Therefore, we have to demo how to generating nGrams from your 

texts:



Special Talks for CSCI-UA.0480-006:

Statistical NLP: A Machine Learning Perspective

Precursor #2: Document Classification (DC)
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P#2.1: Task (T) of Document 
Classification

• Classify a document into a pre-defined category.
• For example, New York Times
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P#2.2: Experiences (E) of Document 
Classification

• We feed millions news about (Not about) politics to intelligent machines.
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P#2.3: Document Classification Model
• Framework of Supervised Learning.



11/11/2015 19NYU Special Talks (NLP&ML)

P#2.3: Document Classification Model
• Why we know this piece of news is mostly likely about politics?
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P#2.3: Document Classification Model
• How could we know he is Mr. Trump, not Hillary?

• Because of his keyword (China): https://www.youtube.com/watch?v=RDrfE9I8_hs
• Because of his key phrase (Big League):  

http://www.slate.com/blogs/the_slatest/2015/09/24/bigly_or_big_league_what_exactly
_is_donald_trump_saying.html

• If the computer know that P(China|Trump) > P(China|Other candidates) from news.
• Then given China, P(Trump|China)?

https://www.youtube.com/watch?v=RDrfE9I8_hs
http://www.slate.com/blogs/the_slatest/2015/09/24/bigly_or_big_league_what_exactly_is_donald_trump_saying.html
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P#2.3: Document Classification Model

• 1) Naïve Bayes Model:
• 𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑃𝑃 𝑦𝑦 𝑥𝑥 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 . (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)
• 𝑦𝑦 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨:
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P#2.3: Document Classification Model

• 2) Logistic Regression Model:
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 . (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)
• 𝑦𝑦 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑛𝑛) is the parameter vector 
corresponding to 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛
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P#2.3: Document Classification Model
• How do we generate the feature vectors from documents?
• Bag of words (BOW)  Binary representation: 

• Any Other representation? (TFIDF?)
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P#2.4: Performance (P) of Document 
Classification

• How to measure the performance of (Binary) classification?
• We have multiple metrics:
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P#2.4: Performance (P) of Document 
Classification

• Besides the Accuracy, in some cases, we care more about Precision & Recall.
• Suppose that we have a classification task that predict whether a tumor is malignant or 

benign, based on some medical features such as the tumor’s size, position, etc.
• Suppose that the model we design will label malignant tumors as positive.
• If we predict a tumor as positive (malignant), and the truth is: it is malignant! Then True 

Positive (TP). Congratulations!
• If we predict a tumor as negative (benign), but the truth is: it is malignant! OMG! That’s False 

Negative(FN). That kills people.
• Therefore, we care more on recall (The proportion of malignant tumor that we need to 

find), rather than precision. 
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P#2.5: Demo of Document 
Classification with Python 

1. Structured document from library:
https://www.kaggle.com/c/titanic
http://localhost:8888/notebooks/PyNote
book/example_2.ipynb#
How to choose features?
What kind of classifier do we use?

You might use Scikit-learn (Machine 
Learning Modules), Pandas (Data 
Manipulation Package) and NLTK (NLP 
toolkits).

I also suggest you to learn this series of 
video:

https://www.kaggle.com/c/titanic
http://localhost:8888/notebooks/PyNotebook/example_2.ipynb
https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A
https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A
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P#2.5: Demo of Document 
Classification with Python 

https://www.kaggle.com/c/dato-native

Leave it to YOU!

You may also need Spark! (Distributed Computing)

2. Unstructured Web document

https://www.kaggle.com/c/dato-native
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Statistical NLP: A Machine Learning Perspective

State-of-the-art Approach #1: Word Embedding (WE)
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S#1.1 Preliminary
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• Let’s recap:

• We’ve talked about “Statistical Language Modeling”. 

• Given “The cat is walking in the bedroom.”; “The cat is running across the street!”

• Basically, Pr(‘cat’|’the’) = #(𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝑡)
#(𝑡𝑡𝑡𝑡𝑡)

. 



S#1.2 Motivation
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• For example, given “The cat is walking in the bedroom.” in the training corpus, 
• Could we generalize to make the sentence “A dog was running in a room.”
• It seems impossible mission for Statistical Language Model based on Ngram learnt by MLE.
• However, we could find word similarity between:

• The|A
• cat|dog
• is/was
• walking/running
• bedroom/room



S#1.2 Motivation
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• The curse of dimensionality!

• If we have a corpus which contains 1,000 sentences (Not many), 5000 tokens (5 tokens per sentence), 2000 words 
(size of vocabulary) .

• How many possible BI-GRAM terms we need to train? 2000 ^ 2 = ?
• How many words daily used in English?

• http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/

• Even bi-gram need to train 170,000 ^ 2 = ? 
• Every float is 4 bytes, 4 bytes * 170,000 ^ 2 = 115GB Memory!

http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/


S#1.2 Motivation
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• Let’s recap:
• How we represent features? BOW

• Rather sparse, difficult to calculate the similarity with COSINE?
• What if Cat = (0.6,0.8), dog = (0.7, 0.6)? More dense, similar!



S#1.2 Motivation
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Figure from [3]: http://www.socher.org/



S#1.3 Model
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Figure from [2]: Neural Language Model



S#1.3 Model
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Do you still remember 
the “Logistic Regression” 
Model?



S#1.4: Discovery

• Promising discovery in Word Embedding, in which each word is 
represented by a low-dimensional vector. Ex. King = (0.6, 0.24, 0.4, …, 
0.3);
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Figure from [4]: Neural Language Model



S#1.5: Low-dimensional representations

• We usually encode each word into a K (K = 50, 100 or 200) dimensional 
vector space.
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How many words daily used in English?
http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/

How much memory space do you need?
Every float is 4 bytes, 4 bytes * 170,000 * 200 = 136MB Memory! 
Compared with 115GB! (1000 TIMES)@

http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language-learning-part-2/
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Special Talks for CSCI-UA.0480-006:

Statistical NLP: A Machine Learning Perspective

State-of-the-art Approach #2: Knowledge Embedding 
(KBE)

http://cs.nyu.edu/courses/fall15/CSCI-UA.0480-006/


S#2.1: Preliminary

• 1. What is knowledge?
• We distill the explosive unstructured web texts into structured tables which record 

the facts of the world. 
• For example, Jinping Xi is the chairman of CCP.

• 2 How we present or store the knowledge?
• For now, we present or store the knowledge in triplets, 

i.e. (head_entity, relationship, tail_entity), abbreviated as (h, r, t).
• For example, (Jinping Xi, chairman of, CCP)

• 3 Is there any free-access repositories of knowledge?
• Of course, you can freely download the whole Knowledge Base online.
• For example, Freebase, NELL, Yago, WordNet…
• Just Google THEM!
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https://www.freebase.com/


S#2.1: Preliminary

• 4 Is knowledge base really useful?
• Sure it is.  Applications such as Google Knowledge Graph and Microsoft Entity Cube. 

We discover the connections between entities around the world.
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Google Knowledge Graph Microsoft Entity Cube

https://www.youtube.com/watch?v=mmQl6VGvX-c
http://entitycube.research.microsoft.com/Default.aspx


S#2.2: Motivation

• However, the KBs we have are far from completion. 
• Recent Study on Freebase by Google Research (WWW 2014) shows that 71% PERSONS have 

no known place of birth, 94% have no known parents, and 99% have no known ethnicity.

• Therefore, we need to explore methods on automatically completing 
knowledge base. (The task: T)

• Here, we focus on knowledge self-inference without extra text corpus.
• A simple rule for relation inference:

• 1st Triplet : (Miao Fan, born in, Liaoning)
• 2nd Triplet: (Liaoning, province of, China).
• => rule inference, new fact: (Miao Fan, Nationality, Chinese).

• But the question is: is it possible to heuristically design rules that adequate for 
billions of facts?

• Tough work!!
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S#2.2: Motivation
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Figure from [5]: DeepWalk



S#2.2: Motivation

• Promising discovery in Word Embedding, in which each word is 
represented by a low-dimensional vector. Ex. King = (0.6, 0.24, 0.4, …, 
0.3);
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• How about Knowledge Embedding?
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(h:Beijing, r:capital_city_of, t: China) (h:Paris, r: capital_city_of, t: France

In the Word Embedding Space:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≈ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

How about Knowledge Embedding Space?
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≈ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑜𝑜𝑜𝑜

Therefore, given a triplet (h, r, t),
𝒉𝒉 + 𝒓𝒓 ≈ 𝒕𝒕

S#2.2: Motivation



S#2.3: Modeling
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Figure from [6]: LMNNE 



S#2.3: Modeling
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• Triplet measurement:

• Pull the positive triplets Together!

• Push the negative triplets Away!

• Overall Objective:



S#2.4: Algorithms
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𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ℎ, 𝑟𝑟, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡 𝑠𝑠

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑑𝑑(ℎ + 𝑟𝑟 − 𝑡𝑡)

1. Link Prediction (predict t, give h and r)
2. Triplet Classification.

(Jinping Xi, chairman of, ?)
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• Contributions:

• From sparse representations to dense representations.
• Low-dimensional vector spaces

• Facilitate statistical learning.
• Similarity & probability computing.

• Scalability possible.
• Make it possible to tackle with large-scale graph computing.



S#2.7: Future Work
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• Several promising directions if you would like to follow our work:

• Knowledge Embedding with text corpus.
• How about adopt Wikipedia. Please Check Miao Fan’s Google Scholar

• Parallel SGD Training for Knowledge Embedding.
• Map-reduce. Please Check Miao Fan’s Google Scholar.

• Question-Answering Embedding?
• Rank(Q(What’s the capital city of China) · A(Beijing))?
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